Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5
Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5
Nếu \(a+b\) ko chia hết cho 5:
- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)
- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:
+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)
+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)
+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)
\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5
\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)
Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)
Đề bài bị sai, ví dụ với \(\left(a;b;c\right)=\left(1;2;3\right)\) thì \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\) chia hết cho 5 nhưng \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\) ko chia hết cho 5
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Bài 1:Với \(ab=1;a+b\ne0\) ta có:
\(P=\frac{a^3+b^3}{\left(a+b\right)^3\left(ab\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4\left(ab\right)^2}+\frac{6\left(a+b\right)}{\left(a+b\right)^5\left(ab\right)}\)
\(=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)
\(=\frac{a^2+b^2-1}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a+b\right)^2+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a^2+b^2+2\right)+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2\right)^2+4\left(a^2+b^2\right)+4}{\left(a+b\right)^4}=\frac{\left(a^2+b^2+2\right)^2}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2+2ab\right)^2}{\left(a+b\right)^4}=\frac{\left[\left(a+b\right)^2\right]^2}{\left(a+b\right)^4}=1\)
Bài 2: \(2x^2+x+3=3x\sqrt{x+3}\)
Đk:\(x\ge-3\)
\(pt\Leftrightarrow2x^2-3x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\ge0\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\left(x\ge0\right)\\4x^2-x-3=0\left(x\ge0\right)\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=1\end{cases}\left(x\ge0\right)}\)
Bài 4:
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{ab}\le a+b\le1\Rightarrow b\le\frac{1}{4a}\)
Ta có: \(a^2-\frac{3}{4a}-\frac{a}{b}\le a^2-\frac{3}{4a}-4a^2=-\left(3a^2+\frac{3}{4a}\right)\)
\(=-\left(3a^2+\frac{3}{8a}+\frac{3}{8a}\right)\le-3\sqrt[3]{3a^2\cdot\frac{3}{8a}\cdot\frac{3}{8a}}=-\frac{9}{4}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Đặt \(x=a^3;y=b^3;z=c^3\), khi đó \(xyz=1\). Bất đẳng thức cần chứng minh trở thành:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
Ta viết lại bất đẳng thức như sau:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Bình phương 2 vế ta được:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta được \(\left(x+y\right)^2\left(x+\frac{1}{y}\right)^2\ge x+1^4\)hay ta được bất đẳng thức:
\(\left(x+y\right)^2\left(x+xz\right)^2\ge\left(x+1\right)^4\Leftrightarrow x^2\left(x+y\right)^2\left(1+z\right)^2\ge\left(x+1\right)^4\)
Tương tự ta được các bất đẳng thức:
\(y^2\left(y+z\right)^2\left(1+x\right)^2\ge\left(y+1\right)^4;z^2\left(z+x\right)^2\left(1+y\right)^2\ge\left(z+1\right)^4\)
Nhân theo vế các bất đẳng thức trên, ta được:
\(x^2y^2z^2\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
\(\ge\left(x+1\right)^4\left(y+1\right)^4\left(z+1\right)^4\)
Hay:
\(\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\ge\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
Mặt khác, ta lại có:
\(\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\ge\left(1+x\right)\left(1+y\right)\left(1+z\right)\cdot8\sqrt{xyz}\)
\(=8\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
Do đó ta được bất đẳng thức:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c\)
sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)
dấu = xảy ra <=>a=b=c>0
Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)
^_^
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)