Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)
hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(xz\right)^2}{zxy^2\left(x+z\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+zx}+\frac{2\left(xz\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\ge\frac{2\left(yz+xz+xy\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)
\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)
\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)
\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)
\(\frac{3}{xy+yz+xz}+\frac{3}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{3}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{3}\right)^2}{x^2+y^2+z^2+2xy+yz+xz}=\frac{\left(\sqrt{6}+\sqrt{3}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{3}\right)^2\)
(*) ta CM :\(\left(\sqrt{6}+\sqrt{3}\right)^2>14\)
TA có \(\left(\sqrt{6}+\sqrt{3}\right)^{^2}=6+3+2\sqrt{18}=9+6\sqrt{2}>9+5=14\)
=> \(\frac{3}{xy+yz+xz}+\frac{3}{x^2+y^2+z^2}>14\)