Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bìa này muốn làm cân 2 bước nha
Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
nó được CM như sau
áp dụng BĐT cô si ta đc
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)
dấu = xảy ra khi x=y=z
Bước 2 ) Theo CM bước 1 . áp dụng ta đc
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
CM tương tự ta đc
\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
cộng zế zới zế ta đc
\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)
=> MAx A=1 khi a=b=c=2
Ta có:
\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)
\(=\frac{1}{4}.2017=\frac{2017}{4}\)
Lời giải:
Từ \(ab+bc+ac=3abc\Rightarrow \frac{1}{c}+\frac{1}{a}+\frac{1}{b}=3\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)
Hoàn toàn tương tự:
\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)
\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)
Cộng các BĐT vừa thu được ở trên theo vế và rút gọn:
\(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\geq \frac{36}{a+2b+3c}+\frac{36}{b+2c+3a}+\frac{36}{c+2a+3b}\)
\(\Leftrightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36F\)
\(\Leftrightarrow 18\geq 36F\Leftrightarrow F\leq \frac{1}{2}\)
Vậy \(F_{\max}=\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax = 2017:4=504,25\)
Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)
Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
=> \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)
=> \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\)
Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\)
Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\)
=> \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\)
=> Pmax = 2017:4=504,25
Do \(ab+bc+ac=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Áp dụng BĐT Cauchy cho 3 số \(\frac{1}{a};\frac{2}{b};\frac{3}{c}\) , ta có :
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=\frac{1}{a}+\frac{4}{2b}+\frac{9}{3c}\ge\frac{\left(1+2+3\right)^2}{a+2b+3c}=\frac{36}{a+2b+3c}\)
\(\Rightarrow\frac{1}{a+2b+3c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\left(1\right)\)
CMTT , ta có : \(\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\); \(\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow F\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}+\frac{2}{a}+\frac{3}{b}+\frac{1}{c}+\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\)
\(=\frac{1}{36}.6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}.3=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Bổ đề :\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si ta có:
\(x+y+z\ge3\sqrt[3]{xyz};\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}}=9\)
Dấu "=" xảy ra ⇔ x=y=z
Ta có:\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{9}.\dfrac{9}{a+3b+2c}\le\dfrac{ab}{9}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)
Tương tự ta có:\(\dfrac{bc}{b+3c+2a}\le\dfrac{bc}{9}\left(\dfrac{1}{b+a}+\dfrac{1}{c+a}+\dfrac{1}{2c}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{ca}{9}.\left(\dfrac{1}{c+b}+\dfrac{1}{a+b}+\dfrac{1}{2a}\right)\)
Cộng vế với vế ta có:
\(A\le\dfrac{1}{9}.\left(\dfrac{ab+bc}{a+c}+\dfrac{cb+ac}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(=\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}.\left(6+\dfrac{6}{3}\right)=1\)
Dấu "=" xảy ra ⇔ a=b=c=2
Vậy Max A=1⇔ a=b=c=2
từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)
cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)
\("="\)khi a=b=c=....
hic :( tự đăng rồi tự giải ra luôn :((( sorry mn
Áp dụng BĐT Svarxơ:
\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\)\(=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}\)\(=\dfrac{36}{a+2b+3c}\)
CMTT: \(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}\ge\dfrac{36}{2a+3b+c}\)
\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}\ge\dfrac{36}{3a+b+2c}\)
Cộng vế theo vế, ta có: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=36F\)
Có: \(ab+bc+ca=3abc\)
Vì a,b,c>0 nên chia cả 2 vế cho abc:
\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=3\)
\(\Rightarrow36F\le18\Leftrightarrow F\le\dfrac{1}{2}\)
Vậy Fmin\(=\dfrac{1}{2}\Leftrightarrow a=b=c=1\)
Có trong câu hỏi tt nha