K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

Lời giải:

Từ điều kiện đề bài dễ dàng suy ra \(a,b,c<\sqrt{3}<2\)

Sử dụng phương pháp hệ số bất định, ta sẽ CM: \(2a+\frac{1}{a}\geq \frac{5}{2}+\frac{a^2}{2}\)

BĐT này luôn đúng vì \(\Leftrightarrow (2-a)(a-1)^2\geq 0\)

Thiết lập tương tự với $b,c$, suy ra \(2(a+b+c)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{15}{2}+\frac{a^2+b^2+c^2}{2}=9\) (đpcm)

Dấu $=$ xảy ra khi $a=b=c=1$

1 tháng 2 2017

10 tháng 7 2018

Đáp án B

3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c

Đặt  t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0

⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.

13 tháng 2 2017

Đáp án B

3 tháng 5 2019

27 tháng 6 2017

Gọi  M a ; b ;   N c ; d

Khi đó ta có M thuộc đường tròn x - 1 2 + y - 2 2 = 1 C  và N thuộc đường thẳng 

Đường tròn (C) có tâm I 1 ; 2 , bán kính  R = 1

Ta có 

Khi đó

Chọn D.

25 tháng 5 2017

Đáp án B

Vậy d lớn nhất bằng  1 3  khi a = b = c = 1.

11 tháng 6 2017

Đáp án D

Phương pháp:

- Phương trình đoạn chắn của mặt phẳng đi qua 3 điểm

A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c khác 0):  x a + y b + z c = 1

- Sử dụng bất đẳng thức: 

Đẳng thức xảy ra khi và chỉ khi  x a = y b = z c

Cách giải:

A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c > 0)

Mặt phẳng (ABC) có phương trình:  x a + y b + z c = 1

Khoảng cách từ O đến (ABC):

Ta có: 

Dấu “=” xảy ra khi và chỉ khi:

=> 

12 tháng 6 2019

Đáp án A

31 tháng 7 2018

Đáp án D