Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a+b+c=0 => b+c=-a
Theo đề ra ta có a3 + b3 + c3 = 0
=> a3 + (b+c)(b2 - bc + c2 )=0
<=> a3- a[(b + c )2 -3bc]= 0
<=> a3- [( -a )2 - 3bc] = 0
<=> a3 - a3 +3bc = 0
<=> 3bc= 0
<=> a =0 hoặc b=0 hoặc c=0 ( đpcm)
cho mik điểm nha bạn ơiii
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)
=> có ít nhất 1 trong 3 số a,b,c bằng 1
Vậy có ít nhất 1 trong 3 số a,b,c bằng 1
Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha
Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)
Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$
Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
<=> a + b + c = bc + ac + ab
<=> (a - ac) + (b - bc) + (c - ab) = 0
<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0
<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0
<=> (1 - c)(ca + cb - c - 1) = 0
<=> (1 - c)[c(a -1) + (cb - abc)]= 0
<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0
<=> (1 - c)(a - 1)(c - cb) = 0
<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1
Vậy....
Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)
\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1
=> Đpcm
ĐKXĐ : a;b;c \(\ne0\)
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)
Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh
ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)
\(\Leftrightarrow a+b+c-ab-bc-ca=0\)
\(\Leftrightarrow abc-ab-bc-ca+a+b+c-1=0\)(vì abc=1)
tự phân tích sẽ ra là \(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
suy ra một trong 3 số =1