K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2015

a + b + c =6 thì đúng hơn..

4 tháng 5 2017

Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Ta có    \(\Delta_1=a^2-4\)  ;   \(\Delta_2=b^2-4\)  ;   \(\Delta_3=c^2-4\)

Do đó   \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)

Vậy   \(\Delta_1+\Delta_2+\Delta_3\ge0\)  nên ít nhất phải có   \(\Delta_1\ge0\)  hoặc  \(\Delta_2\ge0\)  hoặc   \(\Delta_3\ge0\)

(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)

Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.

18 tháng 11 2017

Akai Haruma

17 tháng 11 2017

Các giải của các bài toán này là sử dụng tổng các delta em nhé

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z