K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

27 tháng 4 2017

Giải:

\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)

Không giảm tính tổng quát

Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m+b}{b+m}=1+1=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)

Nhận xét:

Trong một BĐT có chứa chữ, nếu các chữ \(a\)\(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.

27 tháng 4 2017

Thiếu đk ab > 0.

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2=2ab\)

Vì ab > 0

\(\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a^2}{ab}+\dfrac{b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

17 tháng 3 2017

ta có:\(\dfrac{a}{b}< \dfrac{c}{d}=>a.d< c.b\)

ad+ab<cb+ab

hay a.(d+b)<b.(c+a)

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)(1)

ad<cb

=>ad+dc<bc+cd

d.(a+c)<c.(b+d)

=>\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(2)

từ (1) và (2) ta có :

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)\(< \dfrac{c}{d}\)

Tick đi ahihi :D

17 tháng 3 2017

nếu thì ???????????????????

gianroi

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!

11 tháng 3 2017

Ta có:\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

Lại có: \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+b+c+c+a}{a+b+c}\)

\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\). Từ \((1)\)\((2)\) ta có:

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\) (Không là số nguyên)

11 tháng 3 2017

Ta có :\(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+b}< \dfrac{b+a}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\)\(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

\(\Rightarrow\)ĐPCM

13 tháng 3 2017

Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Ta có:

\(\left\{\begin{matrix}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(1\right)\)

Lại có:

\(\left\{\begin{matrix}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{matrix}\right.\)

Cộng vế với vế ta lại được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow1< A< 2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên (Đpcm)

13 tháng 3 2017

Số tự nhiên mà bạn ???

1.Tính giá trị các biểu thức sau a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\) b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\) 2.Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\) 3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13 b, Cho M = b -...
Đọc tiếp

1.Tính giá trị các biểu thức sau

a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)

b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)

2.Tìm x biết

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)

3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13

b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)

Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương

4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng

b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương

5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)

1

Câu 2: 

\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)

\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)

=>x=11

20 tháng 7 2017

Theo đề bài ta có \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\) ( tính chất dãy tỉ số = nhau )

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số = nhau )

20 tháng 7 2017

Bạn giải thích rõ chỗ suy ra đc không

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.