Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a+a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{b-a}{1+bc}-\frac{b-a}{1+ab}-\frac{c-a}{1+bc}+\frac{c-a}{1+ac}\)
\(=\left(b-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ab}\right)-\left(c-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ac}\right)\)
\(=\left(b-a\right)\left(\frac{1+ab-1-bc}{\left(1+ab\right)\left(1+bc\right)}\right)-\left(c-a\right)\left(\frac{1+ac-1-bc}{\left(1+bc\right)\left(1+ac\right)}\right)\)
\(=\left(b-a\right)\frac{b\left(a-c\right)}{\left(1+ab\right)\left(1+bc\right)}-\left(c-a\right)\frac{c\left(a-b\right)}{\left(1+bc\right)\left(1+ac\right)}\)
Quy đồng:
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(c-a\right)c\left(a-b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(a-c\right)c\left(b-a\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b\left(1+ac\right)-c\left(1+ab\right)\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b+abc-c-abc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)là tích của chúng.
Ta có
\(\frac{a-b}{1+ab}=\frac{b-c}{1+bc}=\frac{a-c}{1+ac}\) nên
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ca}\)
\(=\left(a-b\right)\left[\frac{1}{1+ab}-\frac{1}{1+bc}\right]+\left(c-a\right)\left[\frac{1}{1+ac}-\frac{1}{1+bc}\right]\)
\(=\frac{\left(a-b\right)\left(1+bc-1+ab\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{\left(c-a\right)\left(1+bc-1-ac\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{b\left(c-a\right)\left(a-b\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{c\left(c-a\right)\left(b-a\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{\left(a-b\right)\left(c-a\right)}{\left(1+bc\right)}\left[\frac{b}{1+ab}-\frac{c}{1+ac}\right]\)
\(=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\left(đpcm\right)\)
Bài 1:
Từ \(a+b+c=0\) ta có:
\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Lại có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)
\(=-c^3+3abc+c^3=3abc\)
Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)
Bài 2:
Lấy P-Q ta có:
\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)
\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)
\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)
\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)
Ta có đpcm.
giải giúp mình với, mình gấp lắm,mai phải nộp rồi(1like nha)
a) Điều phải chứng minh tương đương với:
\(a^3+b^3-a^2b-b^2a\ge0\\ \Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\left(luon.dung\right)\)
Dấu = xảy ra khi a=b
b) Áp dụng bất đẳng thức ở phần a ta có:
\(\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{a^2b+b^2a+abc}=\dfrac{1}{ab\left(a+b+c\right)}\\ =\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\left(do.abc=1\right)\)
Tương tự : \(\dfrac{1}{b^3+c^3+1}\le\dfrac{a}{a+b+c};\dfrac{1}{c^3+a^3+1}\le\dfrac{b}{a+b+c}\)
\(\Rightarrow P\le\dfrac{a+b+c}{a+b+c}=1\)
Dấu = xảy ra <=> a=b=c=1
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)
Bài 2:
Bài 1:
\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)
Ta có \(\dfrac{a-b}{ab+1}+\dfrac{b-c}{bc+1}+\dfrac{c-a}{ca+1}=\dfrac{\left(a-b\right)\left(bc+1\right)\left(ca+1\right)+\left(b-c\right)\left(ca+1\right)\left(ab+1\right)+\left(a-b\right)\left(bc+1\right)\left(ca+1\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\).