K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 8 2020

\(\overrightarrow{M'N'}=\overrightarrow{M'O}+\overrightarrow{ON'}=k\overrightarrow{MO}+k\overrightarrow{ON}=k\left(\overrightarrow{MO}+\overrightarrow{ON}\right)=k\overrightarrow{MN}\) (đpcm)

14 tháng 8 2019

     Mình không biết trả lời.Mình mới học lớp 5 thôi .Mong bạn thông cảm nhé!

NV
18 tháng 9 2021

Do M là trung điểm AB, Q là trung điểm AD

\(\Rightarrow\) MQ là đường trung bình tam giác ABD

\(\Rightarrow\overrightarrow{MQ}=\dfrac{1}{2}\overrightarrow{BD}\)

Tương tự ta có NP là đường trung bình tam giác BCD

\(\Rightarrow\overrightarrow{NP}=\dfrac{1}{2}\overrightarrow{BD}\)

\(\Rightarrow\overrightarrow{NP}=\overrightarrow{MQ}\)

b. MN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{NM}=\dfrac{1}{2}\overrightarrow{CA}\)

PQ là đường trung bình tam giác ACD

\(\Rightarrow\overrightarrow{PQ}=\dfrac{1}{2}\overrightarrow{CA}\)

\(\Rightarrow\overrightarrow{PQ}=\overrightarrow{NM}\)

NV
18 tháng 9 2021

undefined

25 tháng 8 2021

c1 ta có vector AB+vecAC+vecBC=vec0

c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0

hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>

 

4 tháng 8 2019

A B C P M N

a) \(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=\frac{1}{2}\overrightarrow{AB}+2\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=2\overrightarrow{AC}-\frac{3}{2}\overrightarrow{AB}\)

Do \(\overrightarrow{NA}+2\overrightarrow{NC}=\overrightarrow{0}\)nên N thuộc đoạn AC và \(\overrightarrow{AN}=\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{PN}=\overrightarrow{PA}+\overrightarrow{AN}=-\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

b) Ta thấy \(\overrightarrow{PN}=\frac{1}{3}\left(2\overrightarrow{AC}-\frac{3}{2}\overrightarrow{AB}\right)=\frac{1}{3}\overrightarrow{PM}\). Suy ra M,N,P thẳng hàng (đpcm).

11 tháng 10 2021

\(\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{NA}\)

\(=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{NA}\)

\(=\dfrac{3}{2}\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{NB}+\overrightarrow{BA}\)

\(=\dfrac{3}{2}\overrightarrow{AD}+\overrightarrow{NB}\)

\(=\dfrac{3}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\overrightarrow{AD}\)