Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=> x=y=z
Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2
1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2
1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2
Vậy B= 2.2.2 = 8
z khác 0 thỏa mãn điều kiện $\frac{y+z-x}{x - Giúp tôi giải ...
Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)= \(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{x+y+z}{x+y+z}=1\)
Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)
\(=x+y+z\)
\(=1\)
Vậy B =1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z
TH1 : x + y + z = 0
=> x + y = - z ; y + z = - x và x + z = -y
Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )
= ( x + y / y ) ( z + y / z ) ( x + z / x ) ( 1 )
= - z / y . ( - x / z ) ( -y / x )
= - 1
TH2 : x + y + z khác 0
Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1
thì y + z - x / x = 1 => y + z - x = x => y + z = 2x ( 2 )
z + x - y / y = 1 z + x - y = y z + x = 2y ( 3 )
x + y - z / z = 1 x + y - z = z x + y = 2z ( 4 )
Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có
B = 2x/y . 2y / z . 2z / x
= 2 . 2 . 2 = 8
Vậy B = - 1 khi x + y + z = 0
B = 8 khi x + y + z khác 0
[ xin lỗi nha , tại mình không biết viết phân số ]
Đề sai kìa bạn ơi
Nếu x+y+z = 0 thì
B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1
Nếu x+y+z khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1
=> y+z-x = y ; z+x-y = y ; x+y-z = x
=> x=y=z
=> B = (1+1).(1+1).(1+1) = 8
k mk nha
Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x + y + z = 0
=> x + y = - z
=> z + y = - x
=> z + x = - y
Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)
Nếu x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)
Vậy nếu x + y + z = 0 B = - 1
nếu x + y + z \(\ne\)0 thì B = 8
chỉ có lm thì mới có ăn