K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2022

Không gian mẫu: \(C_5^3=10\)

Chọn 3 bạn có ít nhất 2 nữ: ta có 2 trường hợp thuận lợi là 2 nữ 1 nam và 3 bạn đều nữ

\(\Rightarrow C_2^1.C_3^2+C_3^3=7\) cách

Xác suất: \(P=\dfrac{7}{10}\)

20 tháng 5 2019

Đáp án B. 

+ Rút ra 4 câu bất cách.

+ Rút ra 4 câu mà không có câu nào học thuộc cách.

Xác suất để bạn đó rút được 4 câu trong đó có ít nhất một câu đã học là

13 tháng 11 2019

Chọn A

Vì mỗi câu có 4 phương án trả lời và chỉ có một phương án đúng nên xác suất để chọn đúng đáp án là 1 4 , xác suất để trả lời sai là  3 4

Gọi  là biến cố bạn Nam được trên 8,5   điểm thì A ¯  là biến cố bạn Nam được dưới 8,5 điểm

Vì bạn Nam đã làm chắc chắn đúng 40c âu nên để có  A ¯  xảy ra 2 trường hợp

TH1: Bạn Nam chọn được một câu đúng trong 10 câu còn lại, xác suất xảy ra là: 

TH2: Bạn Nam chọn được hai câu đúng trong 10 câu còn lại, xác suất xảy ra là:

Vậy  

7 tháng 4 2016

Gọi X là biến cố " chia 20 bạn thành 4 nhóm A, B, C, D mỗi nhóm 5 bạn sao cho 5 bạn nữ thuộc cùng 1 nhóm"

Ta có \(\left|\Omega\right|=C^5_{20}C^5_{10}C^5_5\) cách chia các bạn nam vào 3 nhóm còn lại.

Do vai trò các nhóm như nhau, có \(4C^5_{20}C^5_{10}C^5_5\) cách chia các bạn vào các nhóm A, B, C,D trong đó 5 bạn nữ thuộc một nhóm

Xác suất cần tìm là \(P\left(X\right)=\frac{4}{C^5_{20}}=\frac{1}{3876}\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

TH1: Chọn 2 bạn lớp A, 1 bạn B, 1 bạn C, có:

$C^2_4.C^1_5.C^1_6=180$ cách chọn

TH2: Chọn 1 bạn A, 2 bạn B, 1 bạn C, có:

$C^1_4.C^2_5.C^1_6=240$ cách chọn

TH3: Chọn 1 bạn A, 1 bạn B, 1 bạn C, có:

$C^1_4.C^1_5.C^2_6=300$ cách chọn

Tổng số cách chọn: $720$ cách chọn.

I. Có 8 học sinh xếp 8 chỗ ngồi trên một bàn dài. Bạn Quân muốn ngồi cạnh bạn Lâm. Tính xác suất sao cho 2 bạn ấy ngồi cạnh nhau. II. Có 12 bóng đèn, trong đó có 8 bóng đèn tốt, lấy ngẫu nhiên 3 bóng đèn. Tính xác suất để lấy được ít nhất 1 bóng đèn tốt. A. \(\dfrac{42}{55}\)     B. \(\dfrac{54}{55}\)    C. \(\dfrac{1}{55}\)    D. \(\dfrac{8}{55}\) III. Trên mặt phẳng cho bốn điểm phân biệt ABCD, trong đó không có bất kì...
Đọc tiếp

I. Có 8 học sinh xếp 8 chỗ ngồi trên một bàn dài. Bạn Quân muốn ngồi cạnh bạn Lâm. Tính xác suất sao cho 2 bạn ấy ngồi cạnh nhau.

II. Có 12 bóng đèn, trong đó có 8 bóng đèn tốt, lấy ngẫu nhiên 3 bóng đèn. Tính xác suất để lấy được ít nhất 1 bóng đèn tốt.

A. \(\dfrac{42}{55}\)     B. \(\dfrac{54}{55}\)    C. \(\dfrac{1}{55}\)    D. \(\dfrac{8}{55}\)

III. Trên mặt phẳng cho bốn điểm phân biệt ABCD, trong đó không có bất kì ba điểm nào thẳng hàng. Từ các điểm đã cho, có thể lập được bao nhiêu hình tam giác?

A. 10 hình tam giác    B. 6 hình tam giác   

C. 12 hình tam giác    D. 4 hình tam giác

IV. Trong mặt phẳng tọa độ Oxy, cho điểm E(-3; 5) và véc-tơ \(\overrightarrow{v}\) = (1; -2). Phép tịnh tiến theo véc-tơ \(\overrightarrow{v}\) biến điểm E thành điểm nào?

V. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Có bao nhiêu cạnh của hình chóp chéo nhau với canh AB?

A. 4    B. 1    C. 3    D. 2

Giải giúp mình nhé. Cảm ơn các bạn.

 

 
1
NV
22 tháng 12 2022

1.

Không gian mẫu: \(8!\)

Xếp Quân Lâm cạnh nhau: \(2!\) cách

Coi cặp Quân-Lâm như 1 bạn, hoán vị với 6 bạn còn lại: \(7!\) cách

\(\Rightarrow2!.7!\) cách xếp thỏa mãn

Xác suất: \(P=\dfrac{2!.7!}{8!}=\dfrac{1}{4}\)

2.

Không gian mẫu: \(C_{12}^3\)

Lấy 3 bóng sao cho ko có bóng tốt nào (cả 3 đều là bóng ko tốt): \(C_4^3\) cách

\(\Rightarrow C_{12}^3-C_4^3\) cách lấy 3 bóng sao cho có ít nhất 1 bóng tốt

Xác suất: \(P=\dfrac{C_{12}^3-C_4^3}{C_{12}^3}=...\)

3.

Số tam giác bằng với số cách chọn 3 điểm từ 4 điểm nên có: \(C_4^3=...\) tam giác

4.

\(T_{\overrightarrow{v}}\left(E\right)=F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x=-3+1=-2\\y=5-2=3\end{matrix}\right.\) \(\Rightarrow\left(-2;3\right)\)

5.

Có 2 cạnh chéo nhau với AB là SC, SD