Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn ra 2 đường thẳng từ 2016 đường thẳng là :
\(2016\times\frac{2015}{2}=2031120\)
mà cứ hai đường thẳng sẽ cwast nhau tại mọt điểm nên do đó có 2031120 điểm
b. Áp dụng như câu a ta có :
\(1128=48\times\frac{47}{2}\)nên do đó có 48 đường thẳng
a, Cứ 1 đường thẳng sẽ tạo với 20 -1 đường thẳng còn lại 20 - 1 giao điểm
Với 20 đường thẳng tạo được số giao điểm là: ( 20 - 1) \(\times\) 20
Theo cách tính trên mỗi đường thẳng được tính hai lần nên số giao điểm được tạo là:
( 20 - 1)\(\times\) 20 : 2 = 190 ( giao điểm)
b, Cứ 1 điểm sẽ tạo với 10 - 1 điểm còn lại 10 - 1 đường thẳng
Với 10 điểm sẽ tạo được số đường thẳng là: ( 10 - 1) \(\times\) 10
Theo cách tính trên mỗi đường thẳng được tính hai lần số đường thẳng là:
( 10 - 1)\(\times\) 10 : 2 = 45 ( đường thẳng)
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với n−1 đường thẳng còn lại, do đó có n−1 giao điểm.
- Đường thẳng thứ hai giao với n−2 đường thẳng còn lại, do đó có n−2 giao điểm.
...
- Đường thẳng thứ n−2 giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ n−1 giao với đường thẳng còn lại, do đó có 1 giao điểm.
Vậy tổng số giao điểm là
(n−1)+(n−2)+⋯+2+1=n(n−1)/2
Do tổng số giao điểm là 1128 nên ta có
n(n−1)2=1128
<−>n(n−1)=2256
<−>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017. Khi đó ta có
n(n−1)=2017.2
<−>n(n−1)=4034
<−>n(n−1)=2.2017
Ta thấy vế trái là tích của hai số tự nhiên liên tiếp, trong khi bên vế phải lại ko phải là tích 2 số tự nhiên liên tiếp.
Vậy không thể có số giao điểm là 2017.