K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

27 tháng 12 2015

xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi

27 tháng 12 2015

mình giống bạn sakura - sorry  nha

9 tháng 1 2016

Giả sử (a1-b1)(a2-b2)....(a7-b7) la số lẻ

=> a1-b1;a2-b2;.....;a7-b7 là số lẻ

=> (a1-b1)+(a2-b2)+....+(a7-b7) là số lẻ

=> (a1+a2+...+a7)-(b1+b2+...+b3) là số lẻ

Mà 

 (a1+a2+...+a7)-(b1+b2+...+b3) =0 vô lí

=> tich do la so chan

 

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

13 tháng 7 2016

fdhjsbfdbzù

3 tháng 4 2018

Ta có 15 = 1 + 2 + 3 + 4 + 5 

Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)

Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)

\(=5a_1+10⋮15\)

Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)

Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)

Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1 

3 tháng 4 2018

ygtutr