\(a_1\); \(a_2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)

\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)

\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)

25 tháng 11 2017

Sai đề.

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

13 tháng 3 2017

\(a_1+a_2+a_3+..+a_{2015}=0\)\(0\)

\(\Rightarrow\left(a_1+a_2\right)+...+\left(a_1+a_{2015}\right)\)\(=\frac{\left(2015-1\right)}{2}+1=1008\)

\(\Rightarrow a_1+\left(a_1+a_2+..+a_{2015}\right)=1008\)

\(\Rightarrow a_1=1008\)

13 tháng 3 2017

Ta có:

\(a_1+a_2+...+a_{2015}=0\)

\(\Leftrightarrow\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2013}+a_{2014}\right)+\left(a_{2015}+a_1\right)-a_1=0\)

\(\Leftrightarrow1+1+...+1-a_1=0\)

\(\Leftrightarrow1008-a_1=0\)

\(\Leftrightarrow a_1=1008\)

10 tháng 10 2021

Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)

=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)

<=>  \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\) 

<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)