K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)

8 tháng 1 2017

1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)

Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Chọn D. \(P\le\frac{1}{2}\)

9 tháng 1 2017

2. a) Áp dụng BĐT Bunhiacopxki, ta có

\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)

\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)

Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)

NV
18 tháng 10 2020

\(\Leftrightarrow x^3-6x^2+11x-m=0\) (1) có 3 nghiệm pb \(x=\left\{a;b;c\right\}\)

Theo định lý Viet:

\(\left\{{}\begin{matrix}a+b+c=6\\ab+bc+ca=11\\abc=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2b+b=6\\b\left(a+c\right)+ac=11\\abc=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\2b^2+ac=11\\m=abc\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\ac=11-2b^2=3\\m=b.ac=2.3=6\end{matrix}\right.\)

Vậy \(m=6\)

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
26 tháng 11 2022

a: TH1: m=2

Pt sẽ là 3x-4=0

=>x=4/3(loại)

TH2: m<>2

\(\text{Δ}=\left(5-m\right)^2-4\left(m-2\right)\left(m-6\right)\)

\(=m^2-10m+25-4\left(m^2-8m+12\right)\)

\(=m^2-10m+25-4m^2+32m-48\)

\(=-3m^2+22m-23\)

Để phương trình có hai nghiệm phân biệt thì -3m^2+22m-23>0

=>\(\dfrac{11-2\sqrt{13}}{3}< x< \dfrac{11+2\sqrt{13}}{3}\)

a: |x1-x2|=2

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\left(\dfrac{m-5}{m-2}\right)^2-4\cdot\dfrac{m-6}{m-2}=4\)

\(\Leftrightarrow\dfrac{\left(m-5\right)^2-4\left(m^2-8m+12\right)}{\left(m-2\right)^2}=4\)

=>\(m^2-10m+25-4m^2+32m-48=4m^2-16m+16\)

=>-7m^2+38m-39=0

hay \(m=\dfrac{19\pm2\sqrt{22}}{7}\)

c: TH1: x1<x2<0<1

=>x1+x2<0 và x1x2>0

=>(m-5)/(m-2)<0 và (m-6)/(m-2)>0

\(\Leftrightarrow\left\{{}\begin{matrix}2< m< 5\\\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

TH2: 0<x1<x2<1

=>x1x2<1 và 0<x1+x2<2

=>0<m-5/m-2<2 và m-6/m-2<1

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5-2m+4}{m-2}< 0\\\dfrac{m-6-m+2}{m-2}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+1}{m-2}>0\\\dfrac{-4}{m-2}< 0\end{matrix}\right.\)

=>m>2

NV
15 tháng 5 2020

Để tam thức đổi dấu 2 lần

\(\Leftrightarrow x^2-\left(m+2\right)x+8m+1=0\) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-4\left(8m+1\right)>0\)

\(\Leftrightarrow m^2-28m>0\Rightarrow\left[{}\begin{matrix}m>28\\m< 0\end{matrix}\right.\)

15 tháng 5 2020

Đổi dấu 2 lần nghĩa là sao ạ? :(

NV
15 tháng 5 2020

\(\overrightarrow{a}.\overrightarrow{b}=x\left(x+2\right)+\left(x-1\right)\left(x+1\right)\)

\(=2x^2+2x-1\)

Để \(\overrightarrow{a}.\overrightarrow{b}< 3\Leftrightarrow2x^2+2x-1< 3\)

\(\Leftrightarrow x^2+x-2< 0\Rightarrow-2< x< 1\)