K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(A =  \left\{ {0;1;2;3;4;5;6} \right\}\)

\(\,B = \left\{ {1;2;3;6;7;8} \right\}\)

Vậy

\(A \cap B = \left\{ {1;2;3;6} \right\}\)

\(A \cup B = \left\{ {0;1;2;3;4;5;6;7;8} \right\}  = \left\{ {x \in \mathbb{N}|\;x < 9} \right\}\)

\(A\;{\rm{\backslash }}\;B = \left\{ {0;4;5} \right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(E = \{ x \in \mathbb{N}|x < 8\}  = \{ 0;1;2;3;4;5;6;7\} \)

a) Ta có: \(A\backslash B = \left\{ {0;1;2} \right\}\), \(B\backslash A = \left\{ 5 \right\},\)\((A\backslash B) \cap {\rm{(}}B\backslash A) = \emptyset \)

b) Ta có: \(A \cap B = \{ 3;4\} ,\;{C_E}(A \cap B) = \{ 0;1;2;5;6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cap ({C_E}B) = \{ 6;7\} \)

c) Ta có: \(A \cup B = \{ 0;1;2;3;4;5\} ,\;{C_E}(A \cup B) = \{ 6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cup ({C_E}B) = \{ 0;1;2;5;6;7\} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.

\(A \cup B = \){đỏ; cam; vàng; lục; lam; chàm; tím}

\(A \cap B = \){lục; lam}

b) Vì mỗi tam giác đều cũng là một tam giác cân nên \(A \subset B.\)

\(A \cup B = B,\;A \cap B = A.\)

Chú ý

Nếu \(A \subset B\) thì \(A \cup B = B,\;A \cap B = A.\)

16 tháng 5 2017

a) \(\left(A\cap B\right)\cup A=A\)

b) \(\left(A\cup B\right)\cap B=B\)

c) (\(A\)\ \(B\)) \(\cup B=A\cup B\)

d) (\(A\)\ \(B\)) \(\cap\)(\(B\)\\(A\)) \(=\varnothing\)

23 tháng 9 2023

Tham khảo:

+) \(A \cap B = [0;3] \cap (2; + \infty ) = (2;3]\)

+) \(A \cup B = [0;3] \cup (2; + \infty ) = [0; + \infty )\)

+) \(A\,{\rm{\backslash }}\,B = [0;3]\,{\rm{\backslash }}\,(2; + \infty ) = [0;2]\)

+) \(B\,{\rm{\backslash }}\,A = (2; + \infty )\,{\rm{\backslash }}\,[0;3] = (3; + \infty )\)

+) \(\mathbb{R}\,{\rm{\backslash }}\,B = \mathbb{R}\,{\rm{\backslash }}\,(2; + \infty ) = ( - \infty ;2]\)

23 tháng 9 2023

\(A\cap B=(2;3]\).

\(A\cup B=[0;+\infty)\)

\(\text{A \ B}=\left[0;2\right]\)

\(\text{B \ A}=\left(3;+\infty\right)\)

\(\text{R \ B}=(-\infty;2]\)