Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(Q=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q nguyên \(\Leftrightarrow\frac{3}{12-x}\inℤ\)
\(\Leftrightarrow12-x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{13;11;15;9\right\}\)
1b) Bạn tự thay từng giá trị của x vừa tìm được ở câu a) vào rồi tính y nhé :
Ta có :\(11x+18y=120\)(1)
VD: Thay \(x=13\)vào (1), ta được :
\(11\cdot13+18y=120\)\(\Leftrightarrow y=\frac{57}{18}\)
2) Ta có : \(\left(x-45\right)^2\ge0,\forall x\)
\(-\left|2y-5\right|\le0,\forall y\)
Dấu "=" xảy ra khi và chỉ khi :\(\left(x-45\right)^2=-\left|2y-5\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-45=0\\2y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=45\\y=\frac{5}{2}\end{cases}}\)
Thay x = 45 ; y = 5/2 vào biểu thức M ta được:
\(M=45^2+\left(\frac{5}{2}\right)^2+\frac{29}{10}\cdot\frac{5}{2}-9\)
\(M=2029,5\)
\(\left(x-45\right)^2=-\left|2y+5\right|\Leftrightarrow\left(x-45\right)^2+\left|2y+5\right|=0\)
Vì \(\left(x-45\right)^2\ge0;\left|2y+5\right|\ge0\) =>\(\left(x-45\right)^2+\left|2y+5\right|\ge0\)
Dấu "=" xảy ra khi \(\left(x-45\right)^2=0;\left|2y+5\right|=0\)
(x-45)2=0 <=> x-45=0 <=> x=45
|2y+5|=0 <=> 2y+5=0 <=> 2y=-5 <=> y=-5/2
bạn tự thay x;y vào M để tính nhé
\(\left(x-45\right)^2=\left|2y+5\right|\)
\(\Rightarrow\left(x-45\right)^2-\left|2y+5\right|=0\)
Mà \(\begin{cases}\left(x-45\right)^2\ge0\\\left|2y+5\right|\ge0\end{cases}\)\(\Rightarrow\begin{cases}\left(x-45\right)^2=0\\\left|2y+5\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-45=0\\2y+5=0\end{cases}\)\(\Rightarrow\begin{cases}x=45\\y=-\frac{5}{2}\end{cases}\)
Thay vào M ta có:
\(M=\frac{45^2+\left(-\frac{5}{2}\right)^2+29}{10\cdot\left(-\frac{5}{2}\right)-13}=\frac{2025+\frac{25}{4}+29}{-25-13}=\frac{\frac{8125}{4}+29}{-38}=\frac{\frac{8241}{4}}{-38}=-\frac{8241}{152}\)
Ta có: \(\frac{x}{y}=\frac{2}{3}\)
=> \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{y}{9}\)(1)
Có: \(\frac{x}{3}=\frac{z}{5}\)=> \(\frac{x}{6}=\frac{z}{10}\)(2)
Từ (1) ; (2) => \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)=> \(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{36}=\frac{1}{4}\\\frac{y^2}{81}=\frac{1}{4}\\\frac{z^2}{100}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=9\\y^2=\frac{81}{4}\\z^2=25\end{cases}}\)
Vì x, y, z dương nên suy ra: \(\hept{\begin{cases}x=3\\y=\frac{9}{2}\\z=5\end{cases}}\)
=> \(x+2y-2z=3+2.\frac{9}{2}-2.5=2\)
Ta có : \(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)(k>0)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}}\)
Thay x=6k; y=9k; z=10k vào \(x^2+y^2+z^2=\frac{217}{4}\) ta có:
\(\left(6k\right)^2+\left(9k\right)^2+\left(10k^2\right)=\frac{217}{4}\)
\(\Rightarrow6^2.k^2+9^2.k^2+10^2.k^2=\frac{217}{4}\)
\(\Rightarrow k^2.\left(6^2+9^2+10^2\right)=\frac{217}{4}\)
\(\Rightarrow k^2.\left(36+81+100\right)=\frac{217}{4}\)
\(\Rightarrow k^2.217=\frac{217}{4}\)
\(\Rightarrow k^2=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Mà k >0
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=6.\frac{1}{2}=3\\y=9.\frac{1}{2}=\frac{9}{2}\\z=10.\frac{1}{2}=5\end{cases}}\)( thỏa mãn x;y dương)
\(\Rightarrow x+2y-2z=3+2.\frac{9}{2}-2.5=3+9-10=2\)
Vậy x+2y-2z=2
cái gì ở sau (x-45)