Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Giang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
(Tất cả những chỗ 111...11; 222..22; 000...00; 999...99 đều có n chữ số)
Đặt \(A=111....11222..22\)
\(\Rightarrow A=111..11.1000...00+2.111....11\)
\(\Rightarrow A=111...11.10^n+2.111...11\)
\(\Rightarrow A=111...11\left(10^n+2\right)\) (1)
Đặt 1111...11 = k => 9k = 999..999 => 9k + 1 = 1000..000 = 10n
Thay vào (1) ta có:
A = k.(9k + 1 + 2) = k.(9k + 3) = 3k.(3k+1)
Mà 3k và 3k + 1 là hai số tự nhiên liên tiếp => đpcm
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
- Nếu m2 dạng 4k
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
- Nếu m2 dạng 4k+1
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
Quy nạp :
11 - 2 = 9 = 32
1111 - 22 = 99 = 332
...
1111...111 ( 30 chữ số 1 ) - 222...222 ( 15 chữ số 2 ) = 333....3332 ( 15 chữ số 3 )
\(\Rightarrow\)x2 = a - b = 333....3332
\(\Rightarrow\)x = 333...333 ( 15 chữ số 3 )
cảm ơn rất nhiều