Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+y^4+\dfrac{1}{xy}=xy+2\)
\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)
Đặt \(xy=a\)
\(\Rightarrow-2a^3+a^2+2a-1\ge0\)
\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)
Ta có a > 0
\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)
\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)
Lời giải:
Từ $xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{4x+3y+z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+4y+3z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)
\(\frac{1}{3x+y+4z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)
Cộng theo vế 3 BĐT trên và thu gọn ta được:
$A\leq \frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}$
Vậy $A_{\max}=\frac{1}{8}$ khi $x=y=z=3$
\(2\sqrt{xy}\le x+y\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)
\(A=xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4=\frac{17}{4}\)
\(\Rightarrow A_{min}=\frac{17}{4}\) khi \(x=y=\frac{1}{2}\)
b/ \(2y=xy-x=x\left(y-1\right)\Rightarrow x=\frac{2y}{y-1}=2+\frac{2}{y-1}\)
Đồng thời \(x;y>0\Rightarrow2y=x\left(y-1\right)>0\Rightarrow y-1>0\)
\(\Rightarrow S=2+\frac{2}{y-1}+2y=4+\frac{2}{y-1}+2\left(y-1\right)\ge4+2\sqrt{\frac{4\left(y-1\right)}{y-1}}=8\)
\(\Rightarrow S_{min}=8\) khi \(\frac{2}{y-1}=2\left(y-1\right)\Rightarrow y=2\Rightarrow x=4\)
c/ \(x+y+xy\ge7\Leftrightarrow x\left(y+1\right)\ge7-y\Leftrightarrow x\ge\frac{7-y}{y+1}=\frac{8}{y+1}-1\)
\(\Rightarrow S=x+2y\ge2y+\frac{8}{y+1}-1=2\left(y+1\right)+\frac{8}{y+1}-3\)
\(\Rightarrow S\ge2\sqrt{\frac{16\left(y+1\right)}{y+1}}-3=5\)
\(\Rightarrow S_{min}=5\) khi \(\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)
\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)
\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)
\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị
Lời giải:
Áp dụng BĐT Cauchy-Shwarz:
$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$
$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$
$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$
Vậy $B_{\min}=(1+\sqrt{3})^2$
Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$
\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)
Do đó:
\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)
\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)
Đẳng thức xảy ra khi $x=y=z=1.$
Lời giải:
Áp dụng BĐT AM-GM:
$(4xy)^2=(x+y)^2\geq 4xy$
$\Rightarrow 4xy\geq 1\Rightarrow xy\geq \frac{1}{4}$
Bây giờ, cho $x=2; y=\frac{2}{7}$ thỏa mãn điều kiện đề. Nhưng $xy=\frac{4}{7}>\frac{1}{3}$ nên tập giá trị $P=xy$ không thể là $[\frac{1}{4}; \frac{1}{3}]$ được.
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24