Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)
Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)
Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)
Và \(z+xy=\left(x+1\right)\left(y+1\right)\)
Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)
nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)
\(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)
Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)
Dự đoán dấu bằng: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Bài làm:
Ta có:
\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
\(A=\left(x+\frac{4}{x}\right)+\left(3x+\frac{75}{x}\right)+2\left(x+y\right)\)
Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(A\ge2\sqrt{x\cdot\frac{4}{x}}+2\sqrt{3x\cdot\frac{75}{x}}+2\cdot7\)
\(=2\cdot2+2\cdot15+14=48\)
Dấu "='' xảy ra khi: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Vậy Min(A) = 48 khi x = 2 và y = 5
\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
\(=2\left(x+y\right)+\left(x+\frac{4}{x}\right)+\left(3y+\frac{75}{y}\right)\)
\(\ge2\times7+2\sqrt{x\times\frac{4}{x}}+2\sqrt{3y\times\frac{75}{y}}\)( AM-GM )
\(=14+4+30=48\)
Đẳng thức xảy ra khi x = 2 ; y = 5
Vậy MinA = 48, đạt được khi x = 2, y = 5
Ta có \(2\left(x+y\right)=z\left(xy-7\right)\), do x,y,z là các số dương nên xy-7>0.
Khi đó, từ giả thiết ta được : \(z=\frac{2\left(x+y\right)}{xy-7}\)
Suy ra \(S=f\left(x;y\right)=2x+y+\frac{4\left(x+y\right)}{xy-7}\) với điều kiện \(x>0;y>0,xy>7\) (*)
Với mỗi x cố định, xét đạo hàm của hàm số \(f\left(x;y\right)\) theo ẩn y ta được :
\(f'_y\left(x;y\right)=1+\frac{4\left(xy-7\right)-4x\left(x+y\right)}{\left(xy-7\right)^2}=1-\frac{28+4x^2}{\left(xy-7\right)^2}\)
\(f'_y\left(x;y\right)=0\Leftrightarrow x^2y^2-14xy+21-4x^2=0\)
\(\Leftrightarrow y_0=\frac{7}{x}+2\sqrt{1+\frac{7}{x^2}}\)
Suy ra \(f\left(x;y_0\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\)
Xét hàm số : \(g\left(x\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\) với x>0, với \(g'\left(x\right)=2-\frac{11}{x^2}-\frac{28}{x^3\sqrt{1+\frac{7}{x^2}}}\)
\(g'\left(x\right)=0\Leftrightarrow x=3\)
Khi đó \(g\left(x\right)\ge g\left(3\right)\Leftrightarrow g\left(x\right)\ge15\)
Với điều kiện (*), ta có \(S\ge f\left(x;y_0\right)=g\left(x\right)\ge15\)
Vậy MinS=15 khi x=3, y=5, z=2
\(y\left(x+1\right)\ge7-x\Rightarrow y\ge\frac{7-x}{x+1}\)
\(\Rightarrow S\ge x+\frac{2\left(7-x\right)}{x+1}=x+1+\frac{16}{x+1}-3\ge2\sqrt{\frac{16\left(x+1\right)}{x+1}}-3=5\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)