K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

        \(\frac{a}{b}

30 tháng 5 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)

mà  \(\frac{ad}{bd}\) và \(\frac{cb}{db}\) chung mẫu

\(\Rightarrow\) ad < bc 

Ngược lại tương tự nhé. 

chúc bạn học tốt

17 tháng 6 2016

- Chứng minh thuận:

Nhân 2 vế của a/b với d, nhân 2 vế của c/d với b rồi so sánh

- Chứng minh đảo: Hơi khó giải thích...

Cộng ad với bd và bc với bd.... 

18 tháng 6 2016

Có gì mà loằng ngoằng vậy.

1./ Thuận: Nếu: \(\frac{a}{b}>\frac{c}{d}\)nhân cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a}{b}\cdot bd>\frac{c}{d}\cdot bd\Rightarrow a\cdot d>b\cdot c\)đpcm

2./ Nghịch: Nếu \(a\cdot d>b\cdot c\)chia cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a\cdot d}{b\cdot d}>\frac{b\cdot c}{b\cdot d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)đpcm

6 tháng 7 2016

\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)

\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)

9 tháng 7 2016

gggggggggggggggggggggggg

NM
7 tháng 9 2021

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)

\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh

b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm

7 tháng 9 2021

Mk cảm ơn

27 tháng 8 2018

Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)

a) Thay a và c vào biểu thức ta có :

\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)

=> ad ... bc

=> bkd ... bdq

=> k ... q

=> k < q

=> đpcm

b) tương tự thay a và c vào

3 tháng 9 2016

bn vào câu hỏi tương tự

có người làm câu này rồi

22 tháng 6 2019

Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)

a, Mẫu chung bd > 0 do b > 0 , d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc

b, Ngược lại, nếu ad < bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\). Suy ra \(\frac{a}{b}< \frac{c}{d}\)

Ta có thể viết : \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)