K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

3 tháng 6 2021

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

3 tháng 6 2021

\(\frac{1}{9}\)

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

25 tháng 4 2018

Nhận xét :

x2 lớn hơn 0 ( với mọi x dương )

y2 lớn hơn 0 ( với mọi y dương )

Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2  và y max 

Nhưng x + y = 2 

=> x = y = 1 

A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\) 

Vậy A min = 5 <=>  x = y = 1

25 tháng 4 2018

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2

AM-GM => x + y >= \(2\sqrt{xy}\)

=> \(2\sqrt{xy}\)<= 2

=> xy <= 1

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)

=> A >= 1/xy + 3/xy

=> A >= 4/xy

mà xy <= 1

=> A >= 4/1

=> A>= 4 

dấu bằng sảy ra khi x = y = 2/2 = 1

Vậy GTNN của A là 4 khi x = y = 1

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

25 tháng 9 2019

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....

30 tháng 4 2019

CM : với a,b > 0 thì \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\frac{\left(a+b\right)^2}{4}\ge ab\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b

Ta có : P = \(\frac{5}{x^2+y^2}+\frac{3}{xy}=\left(\frac{5}{x^2+y^2}+\frac{5}{2xy}\right)+\frac{1}{2xy}=5.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=\frac{4}{9}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{2xy}\ge\frac{2}{\left(x+y\right)^2}=\frac{2}{9}\)

\(\Rightarrow P\ge5.\frac{4}{9}+\frac{2}{9}=\frac{22}{9}\)

Dấu " = "xảy ra \(\Leftrightarrow\)x = y = 1,5

30 tháng 4 2019

Thanks bạn nhiều lắm ạ

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)