K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Ta có a + b = 1 nên  \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)

\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 2 2018

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

a3+b3+ab=(a+b)3-3ab(a+b)+ab=(a+b)3-ab(3a+3b-1)

=(a+b)3-ab(2a+4b)

=(a+b)3-2ab(a+2b)             (đề bài sai phải không????)

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

NV
25 tháng 7 2021

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

NV
25 tháng 7 2021

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

17 tháng 5 2020

BĐT \(\Leftrightarrow\left(b^2+1\right)\left(ab+1\right)+\left(a^2+1\right)\left(ab+1\right)\ge2\left(a^2+1\right)\left(b^2+1\right)\)

\(\Leftrightarrow\left(b^2+1\right)\left(ab+1\right)-\left(a^2+1\right)\left(b^2+1\right)+\left(a^2+1\right)\left(ab+1\right)-\left(a^2+1\right)\left(b^2-1\right)\ge0\)

\(\Leftrightarrow\left(b^2+1\right)\left(ab-a^2\right)+\left(a^2+1\right)\left(ab-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2b+b-a^2b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\)(luôn đúng)

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Bạn xem lại đề. Với $a=-1; b=-2$ thì $a^3+b^3+ab$ âm, tức là nhỏ hơn $\frac{1}{2}$ (trái với đpcm)

18 tháng 10 2020

Bài 2:

Vì \(a+b=1\)\(\Rightarrow b=1-a\)

\(\Rightarrow a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab=a^2+b^2\)

\(=a^2+\left(1-a\right)^2=a^2+1-2a+a^2\)

\(=2a^2-2a+1=2.\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

\(=2.\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow2\left(a-\frac{1}{2}\right)^2\ge0\forall a\)

\(\Rightarrow2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

hay \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a-\frac{1}{2}=0\)\(\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow b=1-\frac{1}{2}=\frac{1}{2}\)

18 tháng 10 2020

1. x2 - y2 + 2x - 4y - 10 = 0

<=> ( x2 + 2x + 1 ) - ( y2 + 4y + 4 ) - 7 = 0

<=> ( x + 1 )2 + ( y + 2 )2 = 7

<=> ( x + 1 + y + 2 ) ( x + 1 - y - 2 ) = 7

<=> ( x + y + 3 ) ( x - y - 1 ) = 7

Vì x ; y nguyên dương nên : ( x + y + 3 ) ( x - y - 1 ) = 7 . 1

=>\(\orbr{\begin{cases}x+y=4\\x-y=2\end{cases}}\)=>\(\orbr{\begin{cases}x=3\\y=1\end{cases}}\)