K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

a, Hàm số \(\left(d_1\right)y=-2x+3\)

Cho \(y=0=>x=\dfrac{3}{2}\) ta được điểm \(\left(\dfrac{3}{2};0\right)\)

Cho \(x=0=>y=3\) ta được điểm \(\left(0;3\right)\)

Vẽ đồ thị hàm số \(\left(d_1\right)\) đi qua hai điểm trên

     hàm số \(\left(d_2\right)y=x-1\)

Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)

Cho \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)

Vẽ đồ thị hàm số \(\left(d_2\right)\) đi qua hai điểm trên

# Bạn có thể tự vẽ nhé !!

b, Tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là nghiệm của pt

\(-2x+3=x-1\\ =>-3x=-4\\ =>x=\dfrac{4}{3}\)

Thay \(x=\dfrac{4}{3}\) vào \(\left(d_2\right)\)

\(\Rightarrow y=\dfrac{4}{3}-1=\dfrac{1}{3}\)

Vậy tọa độ giao điểm là : \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)

c, Giả sử \(\left(d_3\right)y=ax+b\)

\(\left(d_3\right)\) đi qua \(A\left(-2;1\right)\) và song song với đường thẳng \(\left(d_1\right)y=-2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4.\left(-2\right)+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=9\left(t/m\right)\\a=-2\end{matrix}\right.\)

Vậy \(d_3:y=-2x+9\)

#Rinz

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x=x-1\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

Chỉ tôi câu c đc ko cậu

b: Phương trình hoành độ giao điểm là:

\(2x+2=\dfrac{-1}{2}x-2\)

\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)

hay x=-10

Thay x=-10 vào (d1), ta được:

\(y=-20+2=-18\)

7 tháng 10 2021

Câu b hả bạn

 

21 tháng 9 2023

a) \(\left(d_1\right):y=-2x-2\)

\(\left(d_2\right):y=ax+b\)

\(\left(d_2\right)//d_1\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left(d_2\right):y=-2x+b\)

\(M\left(2;-2\right)\in\left(d_2\right)\Leftrightarrow-2.2+b=-2\)

\(\Leftrightarrow b=2\) \(\left(thỏa.đk.b\ne-2\right)\)

Vậy \(\left(d_2\right):y=-2x+2\)

b) \(\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=-2x+2\end{matrix}\right.\)

loading...

c) \(\left(d_3\right):y=x+m\)

\(\left(d_1\right)\cap\left(d_3\right)=A\left(x;0\right)\Leftrightarrow\left\{{}\begin{matrix}y=x+m\\y=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0=x+m\\0=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\x=-1\end{matrix}\right.\)

\(\Rightarrow\left(d_3\right):y=x+1\)

 

loading...

 

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

c: Vì (d2)//(d) nên \(a=-\dfrac{1}{2}\)

Thay x=-3 và y=0 vào \(y=\dfrac{-1}{2}x+b\), ta được:

\(b+\dfrac{3}{2}=0\)

hay \(b=-\dfrac{3}{2}\)