K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường tròn d: Đường tròn qua D_1 với tâm O' Đoạn thẳng k: Đoạn thẳng [O, K] Đoạn thẳng l: Đoạn thẳng [O', K] Đoạn thẳng m: Đoạn thẳng [C, A] Đoạn thẳng n: Đoạn thẳng [D, A] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O', A] Đoạn thẳng r: Đoạn thẳng [A, B] Đoạn thẳng s: Đoạn thẳng [B, K] Đoạn thẳng t: Đoạn thẳng [O, O'] Đoạn thẳng g_1: Đoạn thẳng [J, O] Đoạn thẳng h_1: Đoạn thẳng [J', O'] Đoạn thẳng i_1: Đoạn thẳng [J, J'] O = (-0.72, 4.26) O = (-0.72, 4.26) O = (-0.72, 4.26) O' = (4.64, 4.02) O' = (4.64, 4.02) O' = (4.64, 4.02) Điểm A: Giao điểm đường của c, d Điểm A: Giao điểm đường của c, d Điểm A: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm D: Giao điểm đường của d, g Điểm D: Giao điểm đường của d, g Điểm D: Giao điểm đường của d, g Điểm H: Giao điểm đường của f, h Điểm H: Giao điểm đường của f, h Điểm H: Giao điểm đường của f, h Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của h, j Điểm K: Giao điểm đường của h, j Điểm K: Giao điểm đường của h, j Điểm J: Giao điểm đường của c, e Điểm J: Giao điểm đường của c, e Điểm J: Giao điểm đường của c, e Điểm J': Giao điểm đường của d, f_1 Điểm J': Giao điểm đường của d, f_1 Điểm J': Giao điểm đường của d, f_1

a) Ta thấy \(\widehat{OAH}+\widehat{HAI}=\widehat{OAI}=90^o\) và \(\widehat{O'AI}+\widehat{IAH}=\widehat{O'AH}=90^o\)

nên \(\widehat{OAH}=\widehat{O'AI}\Rightarrow\widehat{AOH}=\widehat{AO'I}\left(1\right)\)

Ta thấy \(\widehat{OAO'}+\widehat{HAI}=\widehat{OAH}+\widehat{HAI}+\widehat{IAO'}+\widehat{HAI}=\widehat{OAI}+\widehat{HAO'}\)

\(=90^o+90^o=180^o\)

Xét tứ giác AHKI ta cũng có \(\widehat{HKI}+\widehat{HAI}=180^o\Rightarrow\widehat{HKI}=\widehat{OAO'}\left(2\right)\)

Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)

b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')

Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: \(\widehat{ABJ}+\widehat{ABJ'}=90^o+90^o=180^o\)

Ta chứng minh J, K ,J' cũng thẳng hàng.

Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ

Vậy nên K là trung điểm JJ'.

Tóm lại J, B, K ,J' thẳng hàng.Vậy thì \(\widehat{ABK}=\widehat{ABJ'}=90^o\) hay \(KB\perp BA\)

Hình vẽ như trên

a) Ta thấy ^OAH+^HAI=^OAI=90o và ^O'AI+^IAH=^O'AH=90o

nên ^OAH=^O'AI⇒^AOH=^AO'I(1)

Ta thấy ^OAO'+^HAI=^OAH+^HAI+^IAO'+^HAI=^OAI+^HAO'

=90o+90o=180o

Xét tứ giác AHKI ta cũng có ^HKI+^HAI=180o⇒^HKI=^OAO'(2)

Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)

b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')

Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: ^ABJ+^ABJ'=90o+90o=180o

Ta chứng minh J, K ,J' cũng thẳng hàng.

Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ

Vậy nên K là trung điểm JJ'.

\(\Rightarrow\) J, B, K ,J' thẳng hàng.Vậy thì ^ABK=^ABJ'=90o hay KB⊥BA

a: Vì ΔABC vuông tại A

nên A nằm trên (O)

b: ΔOAC cân tại O

mà OI là đường cao

nên OI là phân giác của gócc AOC

Xét ΔOAE và ΔOCE có

OA=OC

góc AOE=góc COE
OE chung

Do đó: ΔOAE=ΔOCE

=>góc OCE=90 độ

=>EC là tiếp tuyến của (O)

8 tháng 5 2020

GMHCjgf,ghj,,g,gjmghfmjfg

24 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OH ⊥ CD, O’K ⊥ CD

Ta có: IA ⊥ CD

Suy ra : OH // IA // O’K

Theo giả thiết : IO = IO’

Suy ra : AH = AK (tính chất đường thẳng song song cách đều) (1)

Ta có : OH ⊥ AC

Suy ra : HA = HC = (1/2).AC (đường kính dây cung) ⇒ AC = 2AH (2)

Lại có : O’K ⊥ AD

Suy ra : KA = KD = (1/2).AD (đường kính dây cung) ⇒ AD = 2AK (3)

Từ (1), (2) và (3) suy ra: AC = AD

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.