Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)
=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O,R) có
OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD
OH=OK
Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
Gọi giao điểm của MB với (O;r) là H, giao điểm của MD với (O;r) là K
Theo đề, ta có: OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O) có
OH,OK là khoảng cách từ tâm O đến cách dây AB,CD
AB,CD là các dây
OH=OK(=r)
Do đó: AB=CD
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2
Ta có: ΔOCD cân tại O
mà OK là đường cao
nên K là trung điểm của CD
=>\(CK=KD=\dfrac{CD}{2}\)
mà CD=AB và \(HA=HB=\dfrac{AB}{2}\)
nên CK=KD=HA=HB
Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OH=OK
OM chung
Do đó: ΔOHM=ΔOKM
=>MH=MK
Ta có: MA+AH=MH
MC+CK=MK
mà AH=CK và MH=MK
nên MA=MC
Xét ΔMBD có \(\dfrac{MA}{AB}=\dfrac{MC}{CD}\)
nên AC//BD
=>\(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
a: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
Do đó; ΔABCđồng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
=>AD*AC=AH*AO
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: OH*OA=OB^2=R^2
b: ΔOCD cân tại O
mà OM là trung tuyến
nên OM vuông góc với CD
Xét tứ giác OMBA có
góc OMA=góc OBA=90 độ
nên OMBA là tứ giác nội tiếp
c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có
góc MOA chung
Do đó: ΔOHE đồng dạng với ΔOMA
=>OH/OM=OE/OA
=>OM*OE=OH*OA=R^2=OC^2=OD^2
=>ΔODE vuông tại D
=>DE là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ
nên MAIO là tứ giác nội tiếp
Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:
O là trung điểm của EF
a: OH*OA=OB^2=R^2
b: ΔOCD cân tại O
mà OM là trung tuyến
nên OM vuông góc với CD
Xét tứ giác OMBA có
góc OMA=góc OBA=90 độ
nên OMBA là tứ giác nội tiếp
c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có
góc MOA chung
Do đó: ΔOHE đồng dạng với ΔOMA
=>OH/OM=OE/OA
=>OM*OE=OH*OA=R^2=OC^2=OD^2
=>ΔODE vuông tại D
=>DE là tiếp tuyến của (O)