K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)

=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K

Xét (O,R) có

OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD

OH=OK

Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)

Gọi giao điểm của MB với (O;r) là H, giao điểm của MD với (O;r) là K

Theo đề, ta có: OH\(\perp\)MB tại H và OK\(\perp\)MD tại K

Xét (O) có

OH,OK là khoảng cách từ tâm O đến cách dây AB,CD

AB,CD là các dây

OH=OK(=r)

Do đó: AB=CD

ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=AB/2

Ta có: ΔOCD cân tại O

mà OK là đường cao

nên K là trung điểm của CD

=>\(CK=KD=\dfrac{CD}{2}\)

mà CD=AB và \(HA=HB=\dfrac{AB}{2}\)

nên CK=KD=HA=HB

Xét ΔOHM vuông tại H và ΔOKM vuông tại K có

OH=OK

OM chung

Do đó: ΔOHM=ΔOKM

=>MH=MK

Ta có: MA+AH=MH

MC+CK=MK

mà AH=CK và MH=MK

nên MA=MC

Xét ΔMBD có \(\dfrac{MA}{AB}=\dfrac{MC}{CD}\)

nên AC//BD

=>\(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ

nên MAIO là tứ giác nội tiếp

30 tháng 4 2017

Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:

  O là trung điểm của EF

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)