Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc AOC + COB = 180đ ( kề bù )
Có AOC = DOB và vì OM , ON là tia phân giác 2 góc này nên MOC = NOB
=> MOC + NOB = AOC ( * )
Có MOC + NOB + COB mà từ ( * ) => MOC + COB + NOB = AOC + COB và = 180o
2 tia OM và ON có chung điểm O và tạo với nhau một góc = 180o
=> OM và ON là 2 tia đối nhau
ta có : 2 đường thẳng AB và CD cách nhau tại O sẽ tạo ra các góc đối đỉnh
=>AOC=BOD [2 góc đối dỉnh]
TA CÓ: OM và ON lần lượt là tia phân giác của AOC ,BOD
Suy ra OM và ON là 2 tia đối nhau
Toán ôn rồi Ko làm thì lượn đi.
a.sử dụng 2 góc đối đỉnh và 2 góc kề bù
b Dễ thấy:
\(\widehat{nOx}+\widehat{xOy'}+\widehat{y'Om}=30^0+120^0+30^0=180^0\) là góc bẹt
=> 2 tia đối nhau
hình vẽ :
bài giải :
a, vì góc x'Oy' là góc đối đỉnh, mà góc xOy = 60o nên x'Oy' = 60o .
Góc xOy và góc xOy' là 2 góc kề bù nên xOy + xOy' = 180o hay 60o + xOy' = 1800
do đó xOy' = 1800 - 600 = 1200
Góc xOy' là góc đối đỉnh với xOy' nên xOy' = x'Oy' = 1200
b, Om, On theo thứ tự là các tia phân giác của 2 góc xOy và xOy' nên :
\(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\) và \(\widehat{nOy'}=\frac{1}{2}\widehat{x'Oy'}\)
mà xOy = x'Oy' => xOm = mOy = nOx' = nOy' = \(\frac{1}{2}\widehat{xOy}\)
Ta có : xOm = nOy' = y'Ox =xOm = y'Ox + xOm + mOy = y'Ox + xOy = 180o
Góc mOn là góc bét , vì thế hai tia Om và On là 2 tia đối nhau