Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
Thu gọn: P(x) = 3x2 - 5 + x4 - 3x3 - x6 - 2x2 - x3
= x2 - 5 + x4 - 4x3 - x6
Sắp xếp: P(x) = -5 + x2 - 4x3 + x4 - x6
Thu gọn: Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1= -x3 +2x5 - x4 + x2 + x - 1
Sắp xếp: Q(x) = -1 + x + x2 - x3 - x4 + 2x5
b) Ta có:
.
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
Thu gọn: P(x) = 3x2 - 5 + x4 - 3x3 - x6 - 2x2 - x3
= x2 - 5 + x4 - 4x3 - x6
Sắp xếp: P(x) = -5 + x2 - 4x3 + x4 - x6
Thu gọn: Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1= -x3 +2x5 - x4 + x2 + x - 1
Sắp xếp: Q(x) = -1 + x + x2 - x3 - x4 + 2x5
b) Ta có:
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)
1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
2) \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
+
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
-
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)
Bài 5:
a: \(P\left(x\right)=3x^5+x^4-2x^2+2x\)
\(Q\left(x\right)=-3x^5+2x^2-2x+3\)
b: \(P\left(x\right)+Q\left(x\right)=3x^5-3x^5+x^4-2x^2+2x^2+2x-2x+3\)
\(=x^4+3\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+4x-3\)
c: \(P\left(0\right)=3\cdot0^5+0^4-2\cdot0^2+2\cdot0=2\)
\(Q\left(0\right)=-3\cdot0^5+2\cdot0^2-2\cdot0+3=3\)
Vậy: x=0 là nghiệm của P(x), không là nghiệm của Q(x)
a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)= \(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)
=\(-3x^3+x^2+3x\)
B(x)= \(-x^2+7+3x^3-x-5\)= \(-x^2+2+3x^3-x\)
=\(3x^3-x^2-x+2\)
b) A(x) - B(x) = \(-3x^3+x^2+3x\)- \(3x^3+x^2+x-2\)
=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)= \(-6x^3+2x^2+4x-2\)
vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)
c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)+ \(3x^3-x^2-x+2\)= 2x+2
ta có: C(x) = 0 <=> 2x+2=0
=> 2x=-2
=> x=-1
vậy x=-1 là nghiệm của đa thức C(x)
a) A(x)= -3x^3 + x^2 + 3x
B(x)= 3x^3 - x^2 - x +2
b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)
= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2
= -6x^3 + 2x^2 + 4x -2
c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2
C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1
Vậy x=-1 là nghiệm của C(x)
a) Thu gọn và sắp xếp đa thức trên theo lũy thừa tăng dần của biến
* \(P\left(x\right)=3x^5-5x^5+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=1+\left(-2x+x\right)+\left(-x^2\right)+\left(x^4+3x^4\right)+\left(3x^5-5x^5-x^5\right)\)
\(P\left(x\right)=1-x-x^2+4x^4-3x^5\)
* \(Q_x=-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=-5+\left(-2x+2x\right)+3x^2+\left(-3x^3\right)+\left(-3x^4\right)+\left(3x^5-x^5\right)\)
\(Q\left(x\right)=-5+3x^2-3x^3-3x^4+2x^5\)
b)
* \(P\left(x\right)+Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)+\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)+\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)\(P\left(x\right)+Q\left(x\right)=\left(1+-5\right)+\left(-x^2+3x^2\right)+\left(4x^4-3x^4\right)+\left(-3x^5+2x^5\right)-x-3x^3\)
\(P\left(x\right)+Q\left(x\right)=-4-x+x^2-3x^3+x^4-x^5\)
* \(P\left(x\right)-Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)-\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)-\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)
\(P\left(x\right)-Q\left(x\right)=1-x-x^2+4x^4-3x^5+5-3x^2+3x^3+3x^4-2x^5\)
\(P\left(x\right)-Q\left(x\right)=\left(1+5\right)+\left(-x^2-3x^2\right)+\left(4x^4+3x^4\right)+\left(-3x^5-2x^5\right)-x+3x^3\)
\(P\left(x\right)-Q\left(x\right)=6-4x+7x^4-5x^5-x+3x^3\)