K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

a, Có 16 đường  thẳng .

=> có 120 đường .

b, Nếu có 4 đường thẳng hàng .

=> có 120 đường + 5 đường = 125 đường .

30 tháng 9 2017

a co 16 duong thang=>120 duong b neu co 4 dien thang hang la=>co 120doan duong +5doan duong=125doan duong

3 tháng 11 2017

Ta chọn 1 điểm bất kỳ.Qua diểm đó ta nối lần lượt từng điểm trong 19 điểm còn lại ta vẽ được 19 đường thẳng

Làm như vậy ta vẽ được 20x19 đường thẳng nhưng mỗi đường thẳng đã được tính 2 lần do đó có tất cả : (20x19) : 2= 190(đường thẳng)

Cho n điểm trong đó không có bất kì 3 điểm nào thẳng hàng.

Cứ qua 2 điểm vẽ được 1 đường thẳng thì số đường thẳng vẽ được là nx(n-1): 2 lưu ý nx(n-1) là tử số 2 là mẫu số b,

Nếu qua 3 điểm không thẳng hàng ta vẽ được 3x2:2=3 đường thẳng giảm đi số đường thẳng là: 3-1=2

vậy trong 20 điểm mà có 3 điểm thẳng hàng thì ta vẽ được: 190-2=188 đường thẳng

Câu 1:Cho bốn điểm A, B, X, Y trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?Câu 2:Cho bốn điểm M, N, C, D trong đó ba điểm M, N, C thẳng hàng còn ba điểm N, C, D không thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng...
Đọc tiếp

Câu 1:Cho bốn điểm A, B, X, Y trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?

Câu 2:Cho bốn điểm M, N, C, D trong đó ba điểm M, N, C thẳng hàng còn ba điểm N, C, D không thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?

Câu 3:Cho trước 5 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm.

a) Hỏi vẽ được bao nhiêu đường thẳng?

b) Nếu thay 5 điểm bằng n điểm (nN, n 2) thì vẽ được bao nhiêu đường thẳng? 

Câu 4:Cho trước 100 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm. Hỏi có tất cả bao nhiêu đường thẳng?

 

0
26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

25 tháng 9 2019

25 đường thẳng

21 tháng 9 2017

bài 1:Qua điểm A và mỗi điểm B,C,D có ba đường thằng là AB, AC,AD. Qua điểm B và mỗi điểm C,D có hai đường thẳng là BC,BD (Không qua A). Qua điểm C và D còn lại có một đường thẳng CD (không đi qua A,B).
Chú ý: có thể trình bày ngắn gọn như sau : với 4 điểm A,B,C,D thì có 6 đường thẳng AB,AC,AD,BC,BD,CD

bài 2:Vì 3 điểm M,N,P thẳng hàng nên đường thẳng đi qua cả 3 điểm M,N,P trùng nhau và Q nằm ngoài đường thẳng trên nên kẻ được 3 đường thẳng lần lượt đi qua 3 điểm thẳng hàng.
Vậy ta có 4 đường thẳng: MP,QN,QM,QP(không kể MN, NP)

26 tháng 9 2017

không bít