Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo dãy fibonaxi bắt đầu bằng 2 số 1 và 1 và cứ mỗi phân tử bằng tổng 2 phân tử đứng trước nó => cứ 3 số thì có 2 số là số lẻ
=>500 : 3 x 2 =332 dư 2 số mà cứ 3 số thì có 2 số là số lẻ nên có thể có 333 hoặc 334 số lẻ
a | 0 | 1 | 3 | 6 | 10 | 15 | ... | x | y | ... | |
b | 1 | 2 | 3 (&) | 4 | 5 | 6 | ... | 99 | 100 | ||
c | 1 | 3 (*) | 6 (^) | 10 | 15 | 21 | ... | x | y |
nhận xét:
+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô (ở hàng b)
VD: (*) + (^) = (&)2
nói vậy hiểu ko??
=> x+ y = 100 ^2 =10 000 (1)
+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):
a+b=c <=> a-c=b (+)
áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)
x-y = 100 (2)
Cộng 2 vế (1) và (2), ta có:
2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050
Câu b thì tớ ko biết
Hai số hạng liên tiếp của dãy có dạng:
\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)
Tổng của 2 số hạng liên tiếp:
\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)
số hạng thứ 2013 là
(2013-1)x2+1=4025
số hạng thứ 2013 là
(2013-1) x2+1=4025