K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)

Xét số nguyên tố có dạng: \(6k+1\)

Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.

Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.

Xét số nguyên tố dạng \(6k-1\)

Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.

Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.

\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)

Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.

31 tháng 12 2016

Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.

     Ta chia 4 số dư trên thành 2 nhóm:

  + Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.

  + Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.

Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.

  => Tổng của chúng chia hết cho 12.

Trong 3 số thì ít nhất phải có 2 số có cùng số dư.

  => Hiệu của chúng chia hết cho 12.

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12

nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11

) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

13 tháng 1 2022
Qwertyuiopasdfghjklmnbvcxz1234567890@#₫_&-+()/*"':;!?~`|•√π÷׶∆£€$¢^°={}\©%®™✓[]>