K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Đáp án C

Số cách lấy 3 điểm từ 10 điểm trên là BCbYddwIRRHl.png.

Số cách lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 là: VYtvlN7s41na.png

Khi lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 thì sẽ không tạo thành tam giác.

oeFW0BD51RSJ.png Số tam giác tạo thành : t8nheLK6EAGF.png tam giác.

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

21 tháng 4 2016

Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)

Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)

                                           \(\Rightarrow a=2c\left(2a+c>0\right)\)

Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)

Vậy tam giác ABC là tam giác nửa đều

22 tháng 3 2016

(la) A E D B C G F c b

Đặt \(\overrightarrow{AB}=\overrightarrow{b,}\overrightarrow{AC}=\overrightarrow{c,}t=\frac{BF}{FC}\)

Khi đó, \(\overrightarrow{AE}=p,\overrightarrow{AD}=q\overrightarrow{c},p,q\in\left(0;1\right)\) và

\(\overrightarrow{AF}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t};\overrightarrow{AG}=\frac{t\overrightarrow{AD}+\overrightarrow{AE}}{1+t}=\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)

Mặt khác, do BE = tCD suy a \(\left(1-p\right)\left|b\right|=t\left(1-q\right)\left|\overrightarrow{c}\right|\)

Từ đó, với chú ý đường phân giác \(l_a\) có vec tơ chỉ phương là \(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\)

Suy ra :

\(\overrightarrow{GF}=\overrightarrow{AF}-\overrightarrow{AG}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t}-\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)

       \(=\frac{t\left(1-q\right)}{1+t}.\overrightarrow{c}+\frac{1-p}{1+t}.\overrightarrow{b}\)

       \(=\frac{\left(1-q\right)\left|b\right|}{1+t\overrightarrow{ }}\left(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\right)=\frac{\left(1-q\right)\left|\overrightarrow{b}\right|}{1+t}.\overrightarrow{AL}\)

=> Điều phải chứng minh

22 tháng 3 2016

Từ giả thiết suy ra với mọi điểm O đều có :

\(\overrightarrow{OP}=\frac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)\(\overrightarrow{ON}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OI}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OE}\right)\)

\(\overrightarrow{OM}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\)\(\overrightarrow{OQ}=\frac{1}{2}\left(\overrightarrow{OD}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OJ}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OD}+\overrightarrow{OE}\right)\)

Từ đó suy ra \(\overrightarrow{JI}=\frac{1}{4}\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\Rightarrow\) IJ // CD => Điều phải chứng minh

a: Xét ΔAMB có ME là đường phân giác

nên AE/EB=AM/MB=AM/MC(4)

XétΔAMC có MD là đường phân giác

nên AD/DC=AM/MC(5)

Từ (4) và (5) suy ra AE/EB=AD/DC

b: Xét ΔABC có 

AE/EB=AD/DC

nên ED//BC

Xét ΔABM có EI//BM

nên EI/BM=AE/AB(1)

Xét ΔACM có ID//MC

nên ID/MC=AD/AC(2)

Xét ΔABC có 

ED//BC

nên AE/AB=AD/AC(3)

Từ (1), (2) và (3) suy ra EI/BM=DI/MC

mà BM=CM

nên EI=DI

hay I là trung điểm của ED

31 tháng 3 2017

a)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra:

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b)

undefined

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm.

31 tháng 3 2017

a) (hình bên)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b) ( hình 1.26)

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

14 tháng 4 2016

a/ Giả sử \(O_1\) là tâm của đường tròn ngoại tiếp tam giác HBC , thì \(O_1\) chính là ảnh của (O) qua phép đối xứng trục BC . Cho nên bán kính của chúng bằng nhau . Tương tự hai đường tròn ngoại tiếp của hai tam giác còn lại có bán kính bằng bán kính của (O) .

b/ Ta hoàn toàn chứng minh được \(O_1;O_2;O_3\) là các ảnh của O qua phép đối xứng trục BC,CA,AB . Vì vậy bán kính các đường tròn này bằng nhau . Mặt khác ta chứng minh tam giác ABC bằng tam giác

 
14 tháng 4 2016

a/ Giả sử \(O_1\) là tâm của đường tròn ngoại tiếp tam giác HBC , thì  \(O_1\) chính là ảnh của (O) qua phép đối xứng trục BC . Cho nên bán kính của chúng bằng nhau . Tương tự hai đường tròn ngoại tiếp của hai tam giác còn lại có bán kính bằng bán kính của (O) .

b/ Ta hoàn toàn chứng minh được \(O_1;O_2;O_3\) là các ảnh của O qua phép đối xứng trục BC,CA,AB . Vì vậy bán kính các đường tròn này bằng nhau . Mặt khác ta chứng minh tam giác ABC bằng tam giác \(O_1;O_2;O_3\)