Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-0a1-0b2-0c3tim-gtln-cua-a-dfracsqrt1-aa-dfracsqrt2-bb-dfracsqrt3-ccbai-nay-dung-cauchyminh-suy-nghi.179994478119
Nếu đổi đề như đã nói phía dưới thì ta làm như sau:
Áp dụng BĐT Cauchy:
\(\sqrt{a-1}=\sqrt{1(a-1)}\leq \frac{1+(a-1)}{2}=\frac{a}{2}\)
\(\Rightarrow \frac{\sqrt{a-1}}{a}\leq \frac{a}{2a}=\frac{1}{2}\)
\(\sqrt{b-2}=\frac{\sqrt{2(b-2)}}{\sqrt{2}}\leq \frac{1}{\sqrt{2}}.\frac{2+(b-2)}{2}=\frac{b}{2\sqrt{2}}\)
\(\Rightarrow \frac{\sqrt{b-2}}{b}\leq \frac{b}{2\sqrt{2}b}=\frac{1}{2\sqrt{2}}\)
\(\sqrt{c-3}=\frac{\sqrt{3(c-3)}}{\sqrt{3}}\leq \frac{1}{\sqrt{3}}.\frac{3+(c-3)}{2}=\frac{c}{2\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{c-3}}{c}\leq \frac{c}{2\sqrt{3}c}=\frac{1}{2\sqrt{3}}\)
Cộng theo vế:
\(A\leq \frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\). Đây chính là GTLN của biểu thức.
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 1=a-1\\ 2=b-2\\ 3=c-3\end{matrix}\right.\Leftrightarrow a=2; b=4; c=6\)
Nếu bạn đổi \(\sqrt{1-a}\mapsto \sqrt{a-1}; \sqrt{2-b}\mapsto \sqrt{b-2}; \sqrt{3-c}\mapsto \sqrt{c-3}\) thì may ra sẽ có thể tìm max bằng Cauchy
Còn nếu đề bài giữ nguyên như trên, cứ cho \(a\) càng gần 0 thì tử càng to, mẫu càng nhỏ, khi đó giá trị \(\frac{\sqrt{1-a}}{a}\) càng lớn vô cùng. Tương tự với các phân thức còn lại. Khi đó biểu thức không tồn tại GTLN
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
CM:$(b+c)(\frac{1}{b}+\frac{1}{c})< \frac{(a+d)^{2}}{ad}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Ta có: a,b,c>0 => \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}\) (1)
Tương tự:
+) \(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}\) (2)
+) \(\dfrac{c}{a+b+c}< \dfrac{c}{c+a}\) (3)
Cộng vế với vế (1), (2), (3)
=> \(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
<=> \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)(*)
Ta lại có: a,b,c>0 => \(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (4)
Tương tự:
+) \(\dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\) (5)
+) \(\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (6)
Cộng vế với vế (4), (5), (6)
=> \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{c+b+a}\)
<=> \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\) (**)
Từ (*), (**) => đpcm
Cho c = 0 thì ta chứng minh
\(0< |a+b\sqrt{2}|< \frac{1}{1000}\)
Để ý thấy biểu thức trong trị tuyệt đối có \(\sqrt{2}\)và trị tuyệt đối phải nhỏ hơn 1 nên ta phải chọn a, b trong khai triển
\(\left(\sqrt{2}-1\right)^n=a+b\sqrt{2}\)(với n tự nhiên)
\(\Rightarrow0< \left(\sqrt{2}-1\right)^n< \frac{1}{1000}\)(1)
Vì \(0< \sqrt{2}-1< 1\)nên chỉ cần n đủ lớn thì 1 sẽ đúng hay ta tìm được các giá trị a, b nguyên thỏa mãn đề bài
Ta thấy với (1) đúng với mọi n tự nhiên lớn hơn 7
PS: Vì chứng minh tồn tại nên chỉ cần chỉ ra 1 số là được. Không làm bài chứng minh dài dòng chi mệt
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6