Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trung bình cộng của 5 số trên là: \(\overline X = \frac{{165 + 172 + 172 + 171 + 170}}{5} = 170\)
Câu 3:
Theo đề, ta có;
\(\left\{{}\begin{matrix}4a+2b+c=3\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a\left(a-c\right)=4a\cdot\left(-2\right)\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+2\\4a-4a+a+2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=3\end{matrix}\right.\)
Câu 3:
Theo đề, ta có;
\(\left\{{}\begin{matrix}4a+2b+c=3\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-8a\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a\left(a-c\right)=4a\cdot\left(-2\right)\\4a+2b+c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+2\\4a-4a+a+2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=3\end{matrix}\right.\)
Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:
160 | 162 | 164 | 165 | 172 | 174 | 177 | 178 | 180 |
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
160 162 164 165 172 174 177 178 180
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)
Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)
Tứ phân vị của mẫu số liệu trên là:
- Trung vị của dãy 160 162 164 165 là: \({Q_1} = 163\)
- Trung vị của dãy 174 177 178 180 là: \({Q_3} = 177,5\)
- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)
b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)
c) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)
Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx 7,13\)
Bảng phân bố tần suất ghép lớp
Chiều cao của 120 học sinh lớp 11 trường THPT M
b) Trong số học sinh có chiều cao chưa đến 155cm, học sinh nữ đông hơn học sinh nam.
Bảng phân bố tần số ghép lớp
Chiều cao của 120 học sinh lớp 11 ở trường trung học phổ thông M
Lớp chiều cao (cm) | Tần số | |
Nam | Nữ | |
[135; 145) | 5 | 8 |
[145; 155) | 9 | 15 |
[155;165) | 19 | 16 |
[165;175) | 17 | 14 |
[175; 185] | 10 | 7 |
Cộng | 60 | 60 |
a)
Số trung bình \(\overline x = \frac{{8.1 + 19.10 + 20.19 + 21.17 + 22.3}}{{1 + 10 + 19 + 17 + 3}} = 20,02\)
+) Sắp xếp các giá trị theo thứ tự không giảm: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{19},\underbrace {21,...,21}_{17},22,22,22\)
Trung vị \({M_e} = \frac{1}{2}(20 + 20) = 20\)
+) Mốt \({M_o} = 20\)
b)
+) Tình độ lệch chuẩn:
Phương sai \({S^2} = \frac{1}{{50}}\left( {{8^2} + {{10.19}^2} + {{19.20}^2} + {{17.21}^2} + {{3.22}^2}} \right) - 20,{02^2} \approx 3,66\)
=> Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,91\)
+) Khoảng biến thiên \(R = 22 - 8 = 14\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
\({Q_2} = {M_e} = 20\)
\({Q_1}\) là trung vị của mẫu: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{14}\). Do đó \({Q_1} = 20\)
\({Q_3}\) là trung vị của mẫu: \(\underbrace {20,...,20}_5,\underbrace {21,...,21}_{17},22,22,22\). Do đó \({Q_3} = 21\)
+) x là giá trị ngoại lệ nếu \(x > 21 + 1,5(21 - 20) = 22,5\) hoặc \(x < 20 - 1,5.(21 - 10) = 18,5\).
Vậy có một giá trị ngoại lệ là 8.
Bảng phân bố tần suất ghép lớp
Lớp chiều cao (cm) | Tần suất | |
Nam | Nữ | |
[135; 145) | 8,33 | 13,33 |
[145; 155) | 15,00 | 25,00 |
[155;165) | 31,67 | 26,67 |
[165;175) | 28,33 | 23,33 |
[175; 185] | 16,67 | 11,67 |
Cộng | 100% | 100% |
a) \(23;{\rm{ }}41;{\rm{ }}71;{\rm{ }}29;{\rm{ }}48;{\rm{ }}45;{\rm{ }}72;{\rm{ }}41\).
+) Số trung bình: \(\overline x = \frac{{23 + 41 + 71 + 29 + 48 + 45 + 72 + 41}}{8} = 46,25\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41;\;{\rm{ }}45;{\rm{ }}48;\;71;72\)
Bước 2: \(n = 8\), là số chẵn nên \({Q_2} = {M_e} = \frac{1}{2}(41 + 45) = 43\)
\({Q_1}\) là trung vị của nửa số liệu \(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41\). Do đó \({Q_2} = \frac{1}{2}(29 + 41) = 35\)
\({Q_3}\) là trung vị của nửa số liệu \(45;{\rm{ }}48;\;71;72\). Do đó \({Q_3} = \frac{1}{2}(48 + 71) = 59,5\)
+) Chỉ có giá trị 41 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt \({M_o} = 41\)
b) \(12;{\rm{ }}32;{\rm{ }}93;{\rm{ }}78;{\rm{ }}24;{\rm{ }}12;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78\).
+) Số trung bình: \(\overline x = \frac{{12 + 32 + 93 + 78 + 24 + 12 + 54 + 66 + 78}}{9} \approx 49,89\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78;{\rm{ }}78;\;93\)
Bước 2: \(n = 9\), là số lẻ nên \({Q_2} = {M_e} = 54\)
\({Q_1}\) là trung vị của nửa số liệu \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32\). Do đó \({Q_2} = \frac{1}{2}(12 + 24) = 18\)
\({Q_3}\) là trung vị của nửa số liệu \(66;{\rm{ }}78;{\rm{ }}78;\;93\). Do đó \({Q_3} = \frac{1}{2}(78 + 78) = 78\)
+) Giá trị 12 và giá trị 78 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt \({M_o} = 12,{M_o} = 78.\)
a) Số trung bình cộng của mẫu số liệu trên là: \(\overline X = \frac{{165 + 155 + 171 + 167 + 159 + 175 + 165 + 160 + 158}}{9} = 163,9\)
b) Mẫu số liệu theo thứ tự không giảm là:
155 158 159 160 165 165 167 171 175
Mẫu số liệu trên có 9 số liệu nên số trung vị là: \({M_e} = 165\)
c) Ta có bàng tần số
155
158
159
160
165
167
171
175
1
1
1
1
2
1
1
1
Vậy mốt của mẫu số liệu là: \({M_o} = 165\)
d) Mẫu số liệu theo thứ tự không giảm là:
155 158 159 160 165 165 167 171 175
Mẫu số liệu trên có 9 số liệu nên số trung vị là: \({M_e} = 165\)
Trung vi của dãy số 155 158 159 160 là: \({Q_1} = \frac{{158 + 159}}{2} = 158,5\)
Trung vị của dãy số 165 167 171 175 là: \({Q_3} = \frac{{167 + 171}}{2} = 169\)
Vậy \({Q_1} = 158,5\), \({Q_2} = 165\), \({Q_3} = 169\)