Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Minh Phương t - Toán lớp 7 - Học toán với OnlineMath
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
⇒x3=y4=z5⇒x20=y15=z12⇒x3=y4=z5⇒x20=y15=z12 và x+y+z=470x+y+z=470
Áp dụng tính chất dãy tỉ số bằng nhau
x20=y15=z12=x+y+z20+15+12=47047=10x20=y15=z12=x+y+z20+15+12=47047=10
⇒\hept⎧⎨⎩x=200y=150z=120
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
Gọi 3 phần được chia từ 84 lần lượt là a;b;c
Theo đề bài, ta có: \(3a=5b=6c\Rightarrow\frac{a}{5}=\frac{b}{3};\frac{b}{6}=\frac{c}{5}\Rightarrow\frac{a}{30}=\frac{b}{18}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{30}=\frac{b}{18}=\frac{c}{15}=\frac{a+b+c}{30+18+15}=\frac{84}{63}=\frac{4}{3}\)
\(\Rightarrow a=30.\frac{4}{3}=40\)
\(b=18.\frac{4}{3}=24\)
\(c=15.\frac{4}{3}=20\)
Vậy 3 phần cần tìm đó là 40;24;20
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
a phần 1/3=b phần 1/4=c phần 1/6 và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420
a phần 1/3=420⇒a=140
b phần 1/4=420⇒b=105
c phần 1/6=420⇒c=70
vậy............
đây là toán nâng cao lớp 7 đúng ko
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{552}{12}=46\)
=>a=138; b=184; c=230
b: Gọi ba số cần tìm lần lượt là a,b,c
Theo đề, ta có: 3a=5b=6c
=>a/10=b/6=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{315}{21}=15\)
=>a=150; b=90; c=75
Gọi 3 số cân tìm là a;b;c ta có: 3a=4b=12c => \(\frac{a}{4}=\frac{b}{3}=\frac{c}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{a}{4}=\frac{b}{3}=\frac{c}{1}=\frac{a+b+c}{4+3+1}=\frac{380}{8}=\frac{95}{2}\)
=>a=190;b=285/2;c=95/2