Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là a ;b ;c
theo bài ta có:
\(3a=2b;\frac{b}{2}=\frac{c}{3}\)
\(9a=6b=4c\) (1)
Vì BCNN( a;b;c) =360 => 360 =a.k=b.m=c.n với ( k;m;n) =1 (2)
Từ (1) (2)
=> 360 = 9a=6b=4c có ( 9;6;4) =1
=> a =360:9 =40
=> b =360:6 =60
=> c =360:4 =90
Vậy 3 số cần tìm là : 40;60 ;90
Gọi ST1; ST2; ST3 lần lượt là a; b; c
Tỉ số của ST1 và ST2 là \(\frac{2}{3}\)=> \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}^{\left(1\right)}\)
Tỉ số của số thứ nhất và số thứ ba là \(\frac{4}{9}\)=> \(\frac{a}{c}=\frac{4}{9}\Rightarrow\frac{a}{4}=\frac{c}{9}^{\left(2\right)}\)
(1) và (2) => \(\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\) mà a3 + b3 + c3 = -1009
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
=> a3 = -1.64 = -64 => a = -4
b3 = -1.216 = -216 => b = -6
c3 = -1.729 = -729 => c = -9
Vậy 3 số đó là -9; -6; -4
Gọi số thứ nhất;số thứ hai;số thứ ba lần lượt là a;b;c (a;b;c khác 0)
Theo bài ra ta có:\(\frac{a}{b}=\frac{2}{3}\) ;\(\frac{a}{c}=\frac{4}{9}\)
=>\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)
=>\(\frac{a}{8}=\frac{b}{12}=\frac{c}{18}\)(1)
Theo tính chất cua day số bằng nhau ta có
(1)=> \(\frac{a+b+c}{8+12+18}\)=\(\frac{523}{38}\)
Từ\(\frac{a}{8}=\frac{523}{38}=>a=\frac{523}{38}\cdot8=\frac{2092}{19}\)
b=\(\frac{3138}{19}\)
c=\(\frac{4707}{19}\)
Gọi 4 số đó theo lần lượt là a,b,c,d
Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5};\frac{c}{6}=\frac{d}{7}\)và a + b + c + d = 210
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15};\frac{c}{6}=\frac{d}{7}\Rightarrow\frac{a}{16}=\frac{b}{24};\frac{c}{30}=\frac{d}{35}\Rightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau là \(\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}=\frac{a+b+c+d}{16+24+30+35}=\frac{210}{105}=2\)
\(\Rightarrow\frac{a}{16}=2\Rightarrow a=32\)
\(\Rightarrow\frac{b}{24}=2\Rightarrow b=48\)
\(\Rightarrow\frac{c}{30}=2\Rightarrow c=60\)
\(\Rightarrow\frac{d}{35}=2\Rightarrow d=70\)
Vậy các số lần lượt là a,b,c,d là 32,48,60,70
Chúc bạn hok tốt
Gọi ST1 là a, ST2 là b, ST3 là c ( a,b,c khác 0 )
Theo bài ra ta có:
\(a:b=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}\left(1\right)\)
\(a:c=\frac{4}{9}\Rightarrow\frac{a}{4}=\frac{c}{9}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)
\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1=\left(-1\right)^3=-1\)
\(\Rightarrow\hept{\begin{cases}a=-1.4=-4\\b=-1.6=-6\\c=-1.9=-9\end{cases}}\)
Vậy ST1 là -4 , ST2 là -6 , ST3 là -9