Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
tổng 3 số : 117
a/2 = b/3 = c/4 = a + b+c/2+3+4 = 117/9 = 13
=> a = 26
b = 39
c = 52
Gọi 3 phần đó lần lượt là a, b, c.
a.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{99}{9}=11\)
\(\frac{a}{2}=11\Rightarrow a=11\times2=22\)
\(\frac{b}{3}=11\Rightarrow b=11\times3=33\)
\(\frac{c}{4}=11\Rightarrow c=11\times4=44\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{285}{15}=19\)
\(\frac{a}{3}=19\Rightarrow a=19\times3=57\)
\(\frac{b}{5}=19\Rightarrow b=19\times5=95\)
\(\frac{c}{7}=19\Rightarrow c=19\times7=133\)
d.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{8}=\frac{d}{12}=\frac{a+b+c+d}{4+7+8+12}=\frac{465}{31}=15\)
\(\frac{a}{4}=15\Rightarrow a=15\times4=60\)
\(\frac{b}{7}=15\Rightarrow b=15\times7=105\)
\(\frac{c}{8}=15\Rightarrow c=15\times8=120\)
\(\frac{d}{12}=15\Rightarrow d=15\times12=180\)
a) 99= 22+33+44
b) 285=57+95+133
c) 2A5 là cái gì ?
d) 465= 60+105+120+180
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
a) Tỉ lệ thuận
Phần 1: 248
Phần 2 : \(\dfrac{1240}{3}\)
Phần 3: 620
b) tỉ lệ nghịch thì ngược lại...
a) Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
<=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a + b + c = 117
Áp dunhj tính chất dãy tỉ số bằng nha ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{117}{9}=13\)
=> a = 26
b = 39
c = 52
đễ thui coi giải í