K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Các dây điện song song với nhau

b: Các mép của viên gạch song song với nhau

c: Các mép của bậc thang song song với nhau

d: Các mép của phím đàn song song với nhau

e: Các mép của các ngăn trên giá sách song song với nhau

g: Các mép của viên gạch song song với nhau

Một số ví dụ khác: Các cạnh bàn đối diện nhau song song với nhau, các mép tường đối diện nhau song song với nhau

a: Các tấm pin năng lượng mặt trời song song với nhau

b: Các bức tường đối diện nhau của toà nhà song song với nhau

Các ví dụ khác: Các bậc cầu thang, mặt bàn và mặt phẳng sàn nhà

-Hai thanh sắt đối diện nhau ở hai bên cầu song song với nhau.

-Hai thanh sắt liền nhau cùng nằm ở thành cầu hoặc mái cầu cắt nhau.

-Thanh sắt nằm ở mái cầu và thanh sắt nằm ở thành cầu chéo nhau.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng nên đường thẳng c không nằm trong mp (a, b). Vì đường thẳng c song song song với đường thẳng b và đường thẳng b nằm trong mp (a, b) nên đường thẳng c song song với mp (a, b).

Ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng nên đường thẳng a  không nằm trong mp (a, c). Vì đường thẳng b song song song với đường thẳng c và đường thẳng c nằm trong mp (a, c) nên đường thẳng b song song với mp (a, c).

Mệnh đề a,b,c đúng

Các đường thẳng nằm trong mặt phẳng sàn nhà là: mép chân giường, chân tường, mép chân bàn, viền thảm trải sàn,…

Các đường thẳng song song với mặt phẳng sàn nhà là: mép cạnh bàn, mép kệ, mép trần nhà, mép cửa sổ,…

Các đường thẳng cắt mặt phẳng sàn nhà là: cạnh tường, cạnh thẳng đứng của kệ, tủ,…

NV
22 tháng 1

A. Mệnh đề đảo sai (2 đường cùng mặt chưa chắc song song)

B. Sai, ví dụ 2 đường thẳng song song 

C. Đúng

D. Sai, 2 đường thẳng song song (ko có quy định nào bắt 1 đường thẳng chỉ nằm trên 1 mặt)

12 tháng 12 2019

Đáp án C

Xét (SAD) và (SBC) có:

S là điểm chung

AD // BC

⇒ giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Mặt phẳng (ABC) chứa đường thẳng AB song song với (Q) nên mp(ABC) cắt mp(Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).

Hai mặt phẳng (ACD) và (ABD) cùng chứa đường thẳng AD song song với (Q) nên chúng cắt mặt phẳng (Q) theo giao tuyến song song với với AD. Vẽ EK song song với AD (K thuộc CD) thì EK, FK lần lượt là giao tuyến của mp(Q) với hai mp(ACD) và (BCD).

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia