Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các đơn thức là:
\(\dfrac{4\pi r^3}{3};\dfrac{p}{2\pi};0;\dfrac{1}{\sqrt{2}}\)
b) Các đa thức và hạng tử là:
- \(ab-\pi r^2\)
Hạng tử: \(ab,-\pi r^2\)
- \(x-\dfrac{1}{y}\)
Hạng tử: \(x,-\dfrac{1}{y}\)
- \(x^3-x+1\)
Hạng tử: \(x^3,-x,1\)
a: A=y(x-4)-5(x-4)
=(x-4)(y-5)
Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5
b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)
=0,2*10=2
d: Khi x=5,75 và y=4,25 thì
D=5,75^3-5,75^2*4,25+4,25^3
=8087/64
\(A\cdot B\cdot C=\dfrac{-2}{3}x^3yz^2\cdot xy^2z^3\cdot\dfrac{-1}{2}x^2yz\)
\(=\left(-\dfrac{2}{3}\cdot\dfrac{-1}{2}\right)\cdot\left(x^3\cdot x\cdot x^2\right)\left(y\cdot y^2\cdot y\right)\cdot\left(z^2\cdot z^3\cdot z\right)\)
\(=\dfrac{1}{3}x^6y^4z^6>=0\forall x,y,z\)
=>ba đơn thức trên sẽ có ít nhất 1 đơn thức không âm với mọi x,y,z
a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3
b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8
2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24
4/5x^3y=4/5*(-1)^3*(-3)=12/5
A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5
a: A=yx-4y-5x+20
=y(x-4)-5(x-4)
=(x-4)(y-5)
Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5
b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)
=0,2*10=2
d: Khi x=5,75 và y=4,25 thì
D=5,75^3-5,75^2*4,25+4,25^3
=8087/64
c: \(D=xyz-xy-yz-xz+x+y+z-1\)
=xy(z-1)-yz+y-xz+z+x-1
=xy(z-1)-y(z-1)-z(x-1)+(x-1)
=(z-1)(xy-y)-(x-1)(z-1)
=(z-1)(xy-y-1)
=(11-1)(9*10-10-1)
=10*79=790
Bài tập `17`
`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?
\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)
`b,` Tại `x=-1 ; y=-2;z=-3`
Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)
Các đơn thức là :
\(\dfrac{x^2y}{2};\dfrac{x}{-5^2};\dfrac{-4}{5}\)
a) Các đơn thức là: \(\dfrac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{{ - 3}}{2}{x^2}y.\)
b) +Xét đơn thức \(\dfrac{4}{5}x\) có hệ số là \(\dfrac{4}{5}\), phần biến là \(x\).
+Xét đơn thức \(\left( {\sqrt 2 - 1} \right)xy\) có hệ số là \(\sqrt 2 - 1\), phần biến \(xy\).
+Xét đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\), phần biến là \(x{y^2}\).
+Xét đơn thức \(\dfrac{1}{2}{x^2}y\) có hệ số là \(\dfrac{1}{2}\), phần biến \({x^2}y\).
+Xét đơn thức \( - \dfrac{3}{2}{x^2}y\) có hệ số là \( - \dfrac{3}{2}\), phần biến \({x^2}y\).
c) Tổng các đơn thức trên là đa thức:
\(\begin{array}{l}\dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \dfrac{1}{2}{x^2}y + \dfrac{{ - 3}}{2}{x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} + \left( {\dfrac{1}{2} + \dfrac{{ - 3}}{2}} \right){x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\end{array}\)
Bậc của đa thức trên là 1 + 2 = 3.
Các đơn thức là:
\(-3;2z;-10x^2yz;\dfrac{4}{xy}\)
Các đa thức là:
\(\dfrac{1}{3}xy+1;5x-\dfrac{z}{2};1+\dfrac{1}{y}\)