Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số tiền ông An nhận được sau 1 tháng:
\({A_1} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^1} = 100,5\) (triệu đồng)
Số tiền ông An nhận được sau 2 tháng:
\({A_2} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^2} = 101,0025\) (triệu đồng)
b) Số tiền ông An nhận được sau 1 năm:
\({A_{12}} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^{12}} = 106,1678\) (triệu đồng)
a) Số tiền chị có trong ngân hàng sau tháng 1 là:
\({P_1} = 100 + 100.0,5\% + 6 = 106,5\) (triệu đồng)
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
\({P_2} = 106,5 + 106,5.0,5\% + 6 = 113,0325\) (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
\({P_1} = 113,0325 + 113,0325.0,5\% + 6 \approx 119,6\) (triệu đồng)
c) Dự đoán công thức của \({P_n}\): \({P_n} = 100.{\left( {1 + 0,5\% } \right)^n}\)
Gọi unn là số tiền sau mỗi tháng ông An còn nợ ngân hàng.
Lãi suất mỗi tháng là 1% .
Ta có:
u1 = 1 000 000 000 đồng.
u2 = u1 + u1.1% - a = u1(1 + 1%) – a (đồng)
u3 = u1(1 + 1%) – a + [u1(1 + 1%) – a].1% – a = u1(1 + 1%)2 – a(1 + 1%) – a
...
un = u1(1 + 1%)n-1 – a(1 + 1%)n-2 – a(1 + 1%)n-3 – a(1 + 1%)n-4 – ... – a.
Ta thấy dãy a(1 + 1%)n-1; a(1 + 1%)n-3; a(1 + 1%)n-4; ...; a lập thành một cấp số nhân với số hạng đầu a1 = a và công bội q = 1 + 1% = 99% có tổng n – 2 số hạng đầu là:
\({S_{n - 2}} = \frac{{a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]}}{{1 - 99\% }} = 100a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]\).
Suy ra un = u1(1 + 1%)n-1 – 100a[1 – (99%)n-2].
Vì sau 2 năm = 24 tháng thì ông An trả xong số tiền nên n = 24 và u24 = 0. Do đó ta có:
u24 = u1(1 + 1%)23 – 100a[1 – (99%)22] = 0
⇔ 1 000 000 000.(99%) – 100a[1 – (99%)22] = 0
⇔ a = 40 006 888,25
Vậy mỗi tháng ông An phải trả 40 006 888,25 đồng.
Theo đề, ta có: A>=800
=>\(500\left(1+0.075\right)^n>=800\)
=>\(1.075^n>=1.6\)
=>\(n>=log_{1.075}1.6\simeq6.5\)
=>Sau ít nhất 7 năm thì số tiền bác Minh thu được là ít nhất 800 triệu
a: nếu lãi kép kì hạn 12 tháng thì số tiền cô Hương có được là:
\(100\cdot\left(1+\dfrac{0.06}{1}\right)^1=106\)(triệu đồng)
Nếu lãi kép kì hạn 1 tháng thì số tiền cô Hương có được là;
\(100\cdot\left(1+\dfrac{0.06}{12}\right)^{12}\simeq106.168\)(triệu đồng)
Nếu lãi kép liên tục thì số tiền cô Hương có được là;
\(100\cdot e^{0.06\cdot1}\simeq106.18\)(triệu đồng)
b: Theo đề, ta có: \(100\cdot e^{0.06\cdot t}=150\)
=>\(e^{0.06\cdot t}=1.5\)
=>\(0.06t=log_e1.5\)
=>\(t\simeq6.76\simeq7\)
=>Sau 7 năm thì cô Hương mới thu được 150 triệu đồng
a) Số tiền lãi sau một năm là: \(A.r\)
Tổng số tiền vốn và lãi sau một năm của người gửi là: \(A + Ar = A\left( {1 + r} \right)\).
b) Số tiền lãi sau tháng thứ nhất là: \(A.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ nhất là: \(A + A.\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right)\).
Số tiền lãi sau tháng thứ hai là: \(A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ hai là:
\(A\left( {1 + \frac{r}{{12}}} \right) + A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right).\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^2}\).
Số tiền lãi sau tháng thứ ba là: \(A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ ba là:
\(A{\left( {1 + \frac{r}{{12}}} \right)^2} + A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}} = A{\left( {1 + \frac{r}{{12}}} \right)^2}.\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^3}\).
…
Vậy tổng số tiền vốn và lãi sau một năm là: \(A{\left( {1 + \frac{r}{{12}}} \right)^{12}}\).
Ta có:
\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).
\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).
\({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).
+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).
Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).
a: tổng số tiền nhận được sau 1 năm là:
\(T=10000000\left(1+\dfrac{0.05}{2}\right)^2=10506250\left(đồng\right)\)
b: Tổng số tiền nhận được sau 1 năm là:
\(T=100000000\cdot e^{0.05}\simeq\text{10512711}\left(đồng\right)\)
Số năm để người đó có được tổng số tiền cả vốn và lãi 15 triệu đồng là:
\(y_1=log_{1,06}\left(\dfrac{15}{10}\right)\simeq7\left(năm\right)\)
Số năm để người đó có được tổng số tiền cả vốn và lãi 20 triệu đồng là:
\(y_2=log_{1,06}\left(\dfrac{20}{10}\right)\simeq12\left(năm\right)\)
a) Ta có:
\(\begin{array}{l}{A_0} = 100\\{A_1} = 100 + 100 \times 0,008 - 2 = 98,8\\{A_2} = 98,8 + 98,8 \times 0,008 - 2 = 97,59\\{A_3} = 97,59 + 97,59 \times 0,008 - 2 = 96,37\\{A_4} = 96,37 + 96,37 \times 0,008 - 2 = 95,14\\{A_5} = 95,14 + 95,14 \times 0,008 - 2 = 93,9\\{A_6} = 93,90 + 93,90 \times 0,008 - 2 = 92,65\end{array}\)
Vậy sau 6 tháng số tiền chị Hương còn nợ là 92,65 triệu đồng.
b, Ta có:
\(\begin{array}{l}{A_0} = 100\\{A_1} = {A_0} + {A_0} \times 0,008 - 2 = 1,008{A_0} - 2\\{A_2} = {A_1} + {A_1} \times 0,008 - 2 = 1,008{A_1} - 2\\{A_3} = {A_2} + {A_2} \times 0,008 - 2 = 1,008{A_2} - 2\\...\\ \Rightarrow {A_n} = {A_{n - 1}} + {A_{n - 1}} \times 0,008 - 2 = 1,008{A_{n - 1}} - 2\end{array}\)