K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

Theo tc dãy tỉ số bằng nhau 

\(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}=\frac{a+2b+3c-6b-9c-3a}{3c+a+2b}\)

\(=\frac{a+2b+3a-3\left(2b+3c+a\right)}{3c+a+2b}=\frac{-2.72}{72}=-2\)

\(\Rightarrow a-6b=-6c;3c-3a=-4b\Leftrightarrow3a-4b=3c\)

ta có hệ \(\hept{\begin{cases}a-6b=-6c\\3a-4b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}3a-18b=-18c\\3a-4b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}-14b=-21c\left(1\right)\\a=-6c+6b\left(2\right)\end{cases}}}\)

Theo giả thiết \(a+2b+3c=72\Rightarrow a=-2b-3c-72\)

\(\Rightarrow-2b-3c-72=-6c+6b\Leftrightarrow8b-3c+72=0\Leftrightarrow8b-3c=-72\)

(1) => \(\frac{b}{-21}=\frac{c}{-14}\)Theo tc dãy tỉ số bằng nhau 

\(\frac{b}{-21}=\frac{c}{-14}=\frac{8b-3c}{8\left(-21\right)-3\left(-14\right)}=-\frac{72}{-126}=\frac{4}{7}\Rightarrow b=-12;c=-8\)

Thay vào (2) vậy \(a=-6c+6b=-6\left(-8\right)+6\left(-12\right)=48-72=-24\)

22 tháng 2 2020

vì b2 = ac nên \(\frac{a}{b}=\frac{b}{c}\)

vì c2=bd nên \(\frac{c}{d}=\frac{b}{c}\)

suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)   (1)

suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{2b^3}{2c^3}=\frac{3c^3}{3d^3}=\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}\)(2)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{2b}{2c}=\frac{3c}{3d}=\frac{a+2b+3c}{b+2c+3d}\)suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3\)(3)

Từ (1), (2) và (3) suy ra điều phải chứng minh

19 tháng 9 2019

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C+2A-3C}{2B+3D+2B-3D}=\frac{4A}{4B}=\frac{A}{B}\left(1\right)\)\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C-2A+3C}{2B+3D-2B+3D}=\frac{6C}{6D}=\frac{C}{D}\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{A}{B}=\frac{C}{D}\)

19 tháng 9 2019

Giải :

Từ đảng thức : \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2b+3d\right).\left(2a-3c\right)\)

\(\Rightarrow4ab-6ad+6bc-9cd=4ab-6bc+6ad-9cd\)

\(\Rightarrow\left(4ab-6ad+6bc-9cd\right)-\left(4ab-6bc+6ad-9cd\right)=0\)

\(\Rightarrow4ab-6ad+6bc-9cd-4ab+6bc-6ad+9cd=0\)

\(\Rightarrow\left(4ab-4ab\right)-\left(6ad+6ad\right)+\left(6bc+6bc\right)-\left(9cd-9cd\right)=0\)

\(\Rightarrow-12ad+12bc=0\)

\(\Rightarrow12bc=12ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)