Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)
b) Ta có: ΔBEM=ΔCFM(cmt)
nên BE=CF(hai cạnh tương ứng)
c) Xét ΔBMF và ΔCME có
MB=MC(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CME}\)(hai góc đối đỉnh)
MF=ME(ΔCFM=ΔBEM)
Do đó: ΔBMF=ΔCME(c-g-c)
⇒\(\widehat{BFM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BFM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên BF//CE(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC
1) Ta có : BE vuông góc AM
mà CF vuông góc AM
⇒ BE song song CF
Xét Δ BEM và Δ CFM có :
Góc BME = Góc CMF (đối đỉnh)
BM=MC (BM là trung tuyến)
Góc EBM = Góc MCF (BE song song CF, đối đỉnh)
⇒ Δ BEM = Δ CFM (góc, cạnh, góc)
⇒ BE=CF
2) Xét tứ giác BECF có :
BE song song CF (cmt)
BE=CF (cmt)
M là trung điểm BC
M là trung điểm EF (Δ BEM = Δ CFM ⇒ ME=MF)
⇒ BECF là hình bình hành
⇒ BF song song CE
3) Ta có :
\(AE+AF=AM-ME+AM+MF\)
mà ME=MF (cmt)
\(\Rightarrow AE+AF=2AM\left(dpcm\right)\)
c, xét tam giác BEM và tam giác AFM có:
BE=AF(câu b)
BM=AM(do AM là trung tuyến của tam giác cân)
góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)
suy ra 2 tam giác trên bằng nhau
suy ra góc EMB= góc AMF( 2 góc tương ứng)
mặt khác: góc AMF+góc FMB=90 độ (câu a)
suy ra góc EMB+ góc FMB=90 độ
hay FM vuông góc với ME
hay tam giác EMF vuông tại M
chị làm đó rồi nhé
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
góc FBC=góc ECB
Do đó: ΔFBC=ΔECB
=>CF=EB
b: Xét ΔMBC có góc MBC=góc MCB
nên ΔMCB cân tại M
=>MB=MC
mà AB=AC
nên AM là trung trực của BC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc BME=góc CMF
=>ΔBEM=ΔCFM
=>BE=CF và ME=MF
b: Xét ΔBMF và ΔCME có
MB=MC
góc BMF=góc CME
MF=ME
=>ΔBMF=ΔCME
c: ΔBMF=ΔCME
=>góc MBF=góc MCE
=>BF//CE