Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinEFG=\dfrac{EG}{FG}=\dfrac{3}{8}\)
\(\widehat{EFG\: }\simeq22^o\)
=> Chọn C
c) Xét tứ giác FMHN có
\(\widehat{NFM}=90^0\)
\(\widehat{FNH}=90^0\)
\(\widehat{FMH}=90^0\)
Do đó: FMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật FMHN có đường chéo FH là tia phân giác của \(\widehat{NFM}\)(gt)
nên FMHN là hình vuông(Dấu hiệu nhận biết hình vuông)
Áp dụng tslg trong tam giác DEF vuông tại D:
\(tanE=\dfrac{DF}{DE}=\dfrac{4}{3}\Rightarrow\widehat{E}\approx53^0\)
a: Ta có:(O) và (O') tiếp xúc ngoài tại A
=>A nằm giữa O và O'
=>B,O,A,O',C thẳng hàng
=>BA và CA lần lượt là đường kính của (O) và (O')
Kẻ tiếp tuyến chung AI của (O) và (O'), I\(\in\)DE
Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: ID=IA
IA=IE
Do đó: ID=IE
=>I là trung điểm của DE
Xét ΔADE có
AI là đường trung tuyến
AI=1/2DE
Do đó: ΔADE vuông tại A
=>\(\widehat{DAE}=90^0\)
b: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)MB tại D
Xét (O') có
ΔAEC nội tiếp
AC là đường kính
Do đó: ΔAEC vuông tại E
=>AE\(\perp\)MC tại E
Xét tứ giác MDAE có \(\widehat{MDA}=\widehat{MEA}=\widehat{DAE}=90^0\)
nên MDAE là hình chữ nhật
c: ta có: MDAE là hình chữ nhật
=>MA cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của MA
=>MA\(\perp\)BC tại A
=>MA là tiếp tuyến chung của (O) và (O')
\(sin\widehat{EFG\: }=\dfrac{EG}{FG}=\dfrac{3}{4}\)
\(\Rightarrow\widehat{EFG\: }\simeq48,6^o\)