Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)d đi qua A(1;1)=>x=1;y=1
=> 1=a+b
d đi qua B(3;-2)=>x=3;y=-2
=>-2=3a+b
Ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\3a+b=-2\end{cases}}\)
=> a=-3/2;b=5/2
Vậy (d): y=-3/2x+5/2
b)(D): x-y+1=0 => (D): y=x+1
d đi qua C(2;-2)=>x=2;y=-2
=>-2=2a+b
vì d//D=>a=1
=>-2=2+b
=>b=-4
Vậy (d): y=x-4
c) Mình ko bt làm nha, xin bạn thông cảm!!
d) d đi qua N(1;-1)=>x=1;y=-1
=>-1=a+b
vì d vuông góc với d': y=-x+3
=>a.-1=-1
=>a=1
=>b=-1
Vậy (d): y=x-1
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
a)
Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3
Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1
Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)
Thay x=0 vào hàm số y= -x+1, ta được: y= -0 + 1 = 1
Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1
(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)
b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :
3x+3 = -x+1
<=> 3x + x = 1 - 3
<=> 4x = -2
<=> x= - \(\dfrac{1}{2}\)
Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)
Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))
c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α
OB= \(\left|x_B\right|=\left|-1\right|=1\)
OC= \(\left|y_C\right|=\left|3\right|=3\)
Xét △OBC (O= 90*), có:
\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)
=> α= 71*34'
Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'