K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

bỏ ghim chh giùm kon, sợ quá:<

NV
3 tháng 3 2022

Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ

\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)

\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)

Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ

\(\Rightarrow u_{k-1}\) hữu tỉ

Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ

Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)

Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ

Hay \(u_{2019}\) là số vô tỉ

3 tháng 3 2022

anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ

5 tháng 5 2016

Dãy số đã cho có thể viết lại là : 

                \(u_n=\log_{2010}n;n=2,3,4.....\)

Do đó \(a=u_{11}+u_{12}+u_{13}+u_{14}+u_{24}\)

              \(=\log_{2010}11+\log_{2010}12+\log_{2010}13+\log_{2010}14+\log_{2010}24\)

              \(=\log_{2010}\left(11.12.13.14.24\right)\)

và \(b=u_{63}+u_{64}+u_{65}+u_{66}+u_{67}=\log_{2010}\left(63.64.65.66.67\right)\)

Từ đó suy ra : 

\(M=b-a=\log_{2010}\left(63.64.65.66.67\right)-\log_{2010}\left(11.12.13.14.24\right)\)

                 \(=\log_{2010}\frac{63.64.65}{11.12.13}\)

                 \(=\log_{2010}\frac{2^7.3^3.5.7.11.13.67}{2^6.3^2.7.11.13}=\log_{2010}\left(2.3.5.67\right)=\log_{2010}2010=1\)

DD
20 tháng 3 2021

\(logu_1+\sqrt{2+logu_1-2logu_{10}}=2logu_{10}\)

\(\Leftrightarrow logu_1-2logu_{10}+\sqrt{2+logu_1-2logu_{10}}=0\)

\(\Leftrightarrow t^2-2+t=0\)(\(t=\sqrt{2+logu_1-2logu_{10}}\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-2\end{cases}}\)

\(\Rightarrow2+logu_1-2logu_{10}=1\)

\(\Leftrightarrow2+logu_1-2log\left(2^9u_1\right)=1\)

\(\Leftrightarrow log\left(10u_1\right)=log\left(2^9u_1\right)^2\)

\(\Rightarrow10u_1=2^{18}u_1^2\)

\(\Leftrightarrow u_1=\frac{10}{2^{18}}\).

\(u_n=\frac{2^{n-1}.10}{2^{18}}>5^{100}\Leftrightarrow n>log_2\left(\frac{5^{100}.2^{19}}{10}\right)=-log_210+100log_25+19\)

Suy ra \(n\ge248\).

NV
2 tháng 8 2021

- Với \(x< 3\Rightarrow f'\left(x\right)=6x^2-6\left(m+1\right)x+6m=6\left(x-1\right)\left(x-m\right)\)

\(f'\left(x\right)=0\Rightarrow6\left(x-1\right)\left(x-m\right)=0\left(1\right)\Rightarrow\left[{}\begin{matrix}x=1\\x=m\end{matrix}\right.\) có tối đa 2 cực trị khi \(x< 3\)

- Với \(x>3\Rightarrow f'\left(x\right)=n\) là hằng số \(\Rightarrow f\left(x\right)\) ko có cực trị khi \(x>3\)

\(\Rightarrow\) Hàm có đúng 3 điểm cực trị khi và chỉ khi nó đồng thời thỏa mãn:

ĐK1: \(f'\left(x\right)=0\) có 2 nghiệm pb khi \(x< 3\Rightarrow\left\{{}\begin{matrix}m< 3\\m\ne1\end{matrix}\right.\)

ĐK2: \(x=3\) là 1 cực trị của hàm số

\(\Rightarrow f\left(x\right)\) liên tục tại \(x=3\) đồng thời đạo hàm đổi dấu khi đi qua \(x=3\)

\(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)\Leftrightarrow3n+46=25-9m\Rightarrow n=-3m-7\) (2)

Mặt khác do 2 nghiệm của (1) đều nhỏ hơn 3 \(\Rightarrow\) tại lân cận trái của \(x=3\) đạo hàm luôn có dấu dương

\(\Rightarrow\) Để đạo hàm đổi dấu khi đi qua \(x=3\) thì \(f'\left(3^+\right)=n< 0\)

Thế vào (2) \(\Rightarrow-3m-7< 0\Rightarrow m>-\dfrac{7}{3}\)

\(\Rightarrow-\dfrac{7}{3}< m< 3\Rightarrow\sum m=0\)

NV
12 tháng 5 2019

\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+4}-2}{x^2}=\lim\limits_{x\rightarrow0}\frac{x^2}{x^2\left(\sqrt{x^2+4}+2\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x^2+4}+2}=\frac{1}{4}\)

Để hàm số liên tục tại \(x=0\Leftrightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow2a-\frac{5}{4}=\frac{1}{4}\Leftrightarrow2a=\frac{3}{2}\Rightarrow a=\frac{3}{4}\)

26 tháng 5 2021

\(\left\{{}\begin{matrix}u_2+u_3-u_6=7\\u_4+u_8=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d-u_1-5d=7\\u_1+3d+u_1+7d=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=3\\d=-2\end{matrix}\right.\)

`=> u_n = 3-2(n-1) = -2n+5`

15 tháng 3 2021

Không biết em có làm sai không:

ĐKXĐ: \(x,y\ge0\).

Đặt 2x = a; 3y = b. 

 HPT trở thành:

\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(a-b\right)\left(ab+12\right)=0\\a^2+b^2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(b-a\right)\left(a^2+b^2\right)+a^3-b^3+12\left(a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a+a^3-4a=\left(\sqrt{5}\right)^b+b^3-4b=0\left(1\right)\end{matrix}\right.\).

Giả sử \(a\ge b\Rightarrow\left(\sqrt{5}\right)^a\ge\left(\sqrt{5}\right)^b\). Mà \(\left(a^3-4a\right)-\left(b^3-4b\right)=\left(a-b\right)\left(a^2+ab+b^2-4\right)\ge0\) nên VT(1) \(\ge\) VP(1). 

Do đẳng thức xảy ra nên ta có a = b. Thay vào ta tìm được a = b = \(2\sqrt{2}\) nên \(x=\sqrt{2};y=\dfrac{2\sqrt{2}}{3}\).

 

15 tháng 3 2021

\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+12\right)\left(1\right)\\4x^2+9y^2=16\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Rightarrow4x^2+9y^2-4=12\) the vo (1)

\(\Rightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+4x^2+9y^2-4\right)\)

\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=27y^3-8x^3-12y+8x\)

\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}+\left(2x\right)^3-4.\left(2x\right)=\left(\sqrt{5}\right)^{3y}+\left(3y\right)^3-4.\left(3y\right)\left(3\right)\)

Xét hàm số \(f\left(t\right)=\left(\sqrt{5}\right)^{2t}+\left(2t\right)^3-4.2t\)  đồng biến trên R

\(\Rightarrow\left(3\right):f\left(2x\right)=f\left(3y\right)\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\4x^2+9y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\dfrac{2\sqrt{2}}{3}\end{matrix}\right.\)