Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(x+2)(x-3)=0
<=>x+2=0 hoặc x-3=0
1, x+2=0 2, x-3=0
<=>x= -2 <=>x=3
Vậy TN của PT là S={-2; 3}
Vậy đáp án đúng là C
Bài 2:
(2x+1)(2-3x)=0
<=>2x+1=0 hoặc 2-3x=0
1, 2x+1=0 2, 2-3x=0
<=>2x= -1 <=>-3x= -2
<=>x=\(\frac{-1}{2}\) <=>x=\(\frac{2}{3}\)
Vậy TN của PT là S={\(\frac{-1}{2}\);\(\frac{2}{3}\)}
Vậy đáp án đúng là C
Bài 3:
2x(x+1)=x2-1
<=>2x2+2x= x2-1
<=>2x2+2x-x2+1=0
<=>x2+2x+1=0
<=>(x+1)2=0
<=>x= -1
Vậy TN của PT là S={-1}
Vậy đáp án đúng là A
Bài 4:
Thay nghiệm x=2 vào PT trên ta được:
(2+2)(2-m)=4
<=>4(2-m)=4
<=>8-4m=4
<=>8-4=4m
<=>4=4m
<=>m=1
Vậy TN của PT là S={1}
Vậy đáp án đúng là A
Bài 5:
Thay nghiệm x=0 vào PT trên ta được:
03 - 02=0+m
<=>0=0+m
<=>m=0
Vậy TN của PT là S={0}
Vậy đáp án đúng là C
Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng
a, \(\left(x-4\right)\left(x+2\right)\ge0\)
th1 : \(\hept{\begin{cases}x-4\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge4\\x\ge-2\end{cases}\Rightarrow}x\ge4}\)
th2 : \(\hept{\begin{cases}x-4\le0\\x+2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le4\\\le-2\end{cases}\Rightarrow}x\le-2}\)
vậy x ≥ 4 hoặc x ≤ -2
b, \(x^2-6x+5=\left(x-1\right)\left(x+5\right)< 0\)
th1 : \(\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-5\end{cases}\Rightarrow}-5< x< 1}\)
th2 : \(\hept{\begin{cases}x-1>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}\left(voli\right)}}\)
vậy -5<x<1
b, \(x^2-6x+5< 0\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
Vì \(x-5< x-1\)
\(\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}\Leftrightarrow1< x< 5}\)
Vậy bft có tập nghiệm S = { x | 1 < x < 5 }
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
:)))