K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

9 tháng 1 2017

b: \(AB=\sqrt{\left(-2-2\right)^2+\left(0-1\right)^2}=\sqrt{17}\)

\(AC=\sqrt{\left(3-2\right)^2+\left(3-1\right)^2}=\sqrt{5}\)

\(BC=\sqrt{\left(3+2\right)^2+\left(3-0\right)^2}=\sqrt{34}\)

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-6}{\sqrt{85}}\)

=>sin A=7/căn 85

\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{17}\cdot\sqrt{5}\cdot\dfrac{7}{\sqrt{85}}=\dfrac{7}{2}\)

\(AD=\sqrt{\left(4-2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)

\(DE=\sqrt{\left(-9-4\right)^2+\left(4-5\right)^2}=\sqrt{170}\)

\(AE=\sqrt{\left(-9-2\right)^2+\left(4-1\right)^2}=\sqrt{178}\)

\(cosA=\dfrac{AD^2+AE^2-DE^2}{2\cdot AD\cdot AE}\simeq0,23\)

=>sin A=0,97

\(S_{ADE}=\dfrac{1}{2}\cdot2\sqrt{5}\cdot\sqrt{178}\cdot0,97=29\)

\(OA=\sqrt{2^2+1^2}=\sqrt{5};OB=\sqrt{\left(-2\right)^2}=2\)

AB=căn 17

\(cosA=\dfrac{AO^2+AB^2-OB^2}{2\cdot AO\cdot AB}=\dfrac{9}{\sqrt{85}}\)

=>sin A=2/căn 85

\(S_{OAB}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{17}\cdot\dfrac{2}{\sqrt{85}}=1\)

c: vecto AB=(-4;-1)=(4;1)

Tọa độ M là trung điểm của AB là;

x=(2-2)/2=0 và y=(1+0)/2=0,5

Phương trình trung trực của AB là:

4(x-0)+1(y-0,5)=0

=>4x+y-0,5=0

vecto AC=(1;2)

Tọa độ trung điểm của AC là;

x=(2+3)/2=2,5 và y=(1+3)/2=2

Phương trình trung trực của AC là:

1(x-2,5)+2(y-2)=0

=>x+2y-6,5=0

vecto BC=(5;3)

Tọa độ trung điểm của BC là:

x=(-2+3)/2=1/2 và y=(0+3)/2=1,5

Phương trình trung trực của BC là:

5(x-0,5)+3(y-1,5)=0

=>5x+3y-4=0

NV
29 tháng 6 2020

a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)

b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)

c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?

d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)

31 tháng 10 2021

\(\left\{{}\begin{matrix}a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=0\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\b^2-4ac=16a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\4a^2-4ac=16a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\a-c=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\c=a-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+2a+a-4=0\\b=-2a\\c=a-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-3\end{matrix}\right.\)

16 tháng 1 2021

??Đề kiểu j đây??

17 tháng 1 2021

Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))

NV
9 tháng 2 2020

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

NV
9 tháng 2 2020

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng định lí cosin ta có:

\(\left\{ \begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos ABC\\B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos BAD\end{array} \right.\)

Mà \(AD = BC;\cos BAD = \cos ({180^ \circ } - ABC) =  - \cos ABC\) 

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}A{C^2} = A{B^2} + B{C^2} + 2.AB.BC.\cos BAD\\B{D^2} = A{B^2} + B{C^2} - 2.AB.AD.\cos BAD\end{array} \right.\end{array}\)

Cộng vế với vế ta được:

\( A{C^2} + B{D^2} = 2\left( {A{B^2} + B{C^2}} \right)\)

b)  Theo câu a, ta suy ra: \(A{C^2} = 2\left( {A{B^2} + B{C^2}} \right) - B{D^2}\)

\(\begin{array}{l} \Rightarrow A{C^2} = 2\left( {{4^2} + {5^2}} \right) - {7^2} = 33\\ \Rightarrow AC = \sqrt {33} \end{array}\)

1 tháng 10 2020

ycbt\(\Leftrightarrow\hept{\begin{cases}9^4a+9^3b+9^2c+9d+e=32078\left(p\right)\\a,b,c,d,e\in N;\le8;a\ne0\end{cases}}\)

VP(p): 9 dư 2 =>e =2

\(\Rightarrow9^3a+9^2b+9c+d=\frac{32078-2}{9}=4564⋮9\Rightarrow d=0\)

\(\Rightarrow9^2a+9b+c=\frac{3564}{9}=396⋮9\Rightarrow c=0\)

\(\Rightarrow9a+b=\frac{396}{9}=44\)chia 9 dư 8 => b=8

=> 9a=36=>a=4

Vậy S =14