Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)
\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)
mà AD+DC=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; DC=5cm
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)
b: Xét ΔBAH có BI là phân giác
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc ABH chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)
Do đó: ΔBAD~ΔBHI
=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)
=>\(BA\cdot BI=BD\cdot BH\)
Ta có: ΔBAD~ΔBHI
=>\(\widehat{BDA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)
Dành cho anh em nào cần phần C nha
Xét ∆HIB và ∆AID có:
Góc IHB= góc IAD
Góc I( đối đỉnh)
Suy ra ∆HIB đồng dạng vs ∆ AID
Suy ra góc HBI = ADI
Mà tâm giác BIH vuông tại H nên Góc HBI = BIH
Mà hai góc I đối đỉnh nên góc HBI = AID
Mà góc HBI = ADI
Nên góc ADI = góc AID
Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )
a: BC=10cm
Xét ΔABC có BD là phân giác
nên DA/AB=DC/BC
=>DA/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:DA=3cm; DC=5cm
b: Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(1)
Xét ΔABC có BD là phân giác
nên AD/DC=BA/BC(2)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
hay BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=AD/DC
a, Xét tam giác ABC vuông tại A, có AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=36+64\)
\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm
Vì BD là phân giác ^ABC nên
\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)
hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)
\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm
\(\Rightarrow AD=AC-DC=8-5=3\)cm
b, Xét tam giác BHA và tam giác BAC ta có
^BHA = ^A = 900
^B _ chung
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2)
Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)
xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)
sao lại có tam giác IHA được ? hay còn cách nào khác ko ?
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
Bài 1:
Gọi số sách của giá thứ nhất lúc đầu là x(cuốn)(0<x<400)
thì số sách của giá thứ hai lúc đầu là 400-x(cuốn)
số sách của giá thứ nhất về sau là x-20(cuốn)
số sách của giá thứ hai về sau là 400-x+20=-x+420
Theo bài ra ta có phương trình:
x-20=-x+420
⇔2x=440
⇔ x=220(t/m)
Vậy số sách của giá thứ nhất lúc đầu là 220 cuốn;giá thứ hai là 400-220=180 cuốn
1.
Số sách tham khảo về KHTN: \(120.45\%=54\) cuốn
Số sách tham khảo về HKXH: \(120-54=66\) cuốn
Gọi số sách về KHXH cần bổ sung thêm là x>0
\(\Rightarrow\dfrac{54}{120+x}=\dfrac{40}{100}=\dfrac{2}{5}\)
\(\Leftrightarrow270=2\left(120+x\right)\Rightarrow x=15\) (cuốn)
2. \(BC=\sqrt{AB^2+AC^2}=10\)
\(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{DC}{BC}\\AD+DC=AC\end{matrix}\right.\) \(\Rightarrow\dfrac{AD}{6}=\dfrac{8-AD}{10}\Rightarrow AD=3\Rightarrow DC=5\)
Trong tam giác ABH, I là chân đường phân giác góc B nên theo định lý phân giác: \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\) (1)
Lại có: \(\dfrac{DA}{DC}=\dfrac{AB}{BC}\) (2) theo định lý phân giác
Đồng thời 2 tam giác vuông ABH và CBA đồng dạng (chung góc B)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AB}{BC}\) (3)
(1); (2); (3) \(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
Do BD là phân giác \(\Rightarrow\widehat{ABD}=\widehat{IBH}\) (4)
\(\Rightarrow\) Hai tam giác vuông BAD và BHI đồng dạng
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{BD}{BI}\Rightarrow AB.BI=BH.BD\)
Ta có: \(\widehat{ADB}+\widehat{ABD}=90^0\) (tam giác ABD vuông tại A) (5)
Tương tự: \(\widehat{BIH}+\widehat{IBH}=90^0\)
Mà \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh) \(\Rightarrow\widehat{AID}+\widehat{IBH}=90^0\) (6)
(4); (5); (6) \(\Rightarrow\widehat{AID}=\widehat{ADB}\Rightarrow\Delta AID\) cân tại A
3.
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-5=t\)
\(\Rightarrow t\left(t-16\right)=297\)
\(\Leftrightarrow t^2-16t-297=0\Rightarrow\left[{}\begin{matrix}t=27\\t=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-5=27\\x^2+4x-5=-11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-32=0\\x^2+4x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+8\right)\left(x-4\right)=0\\\left(x+2\right)^2+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)