Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Áp dụng tính chất tỉ số lượng giác vào tam giác OCI vuông tại O .
\(Tan\widehat{OCI}=\dfrac{OI}{CO}=\dfrac{\dfrac{R}{2}}{R}=\dfrac{1}{2}\)
\(\Rightarrow\widehat{OCI}=26^o33^,\)
\(\Rightarrow\widehat{MOD}=2\widehat{MCD}=53^o7^,\)
Vậy ...
c) Theo câu b: MC là tiếp tuyến của đường tròn (O), MB cũng là tiếp tuyến từ M đến (O)
=> MB = MC => \(\Delta\)BMC cân tại M. Ta có: MO là phân giác ^BMC
=> MO cũng là đường trung trực của BC. Mà I thuộc MO => IB=IC (1)
Dễ có H là trung điểm của BC => HC=HB
CI vuông góc d; BO vuông góc d => CI // BO => ^HCI = ^HBO
Xét \(\Delta\)CHI & \(\Delta\)BHO: ^HCI = ^HBO; HC=HB; ^CHI = ^BHO (Đối đỉnh)
=> \(\Delta\)CHI = \(\Delta\)BHO (g.c.g) => IC = OB (2)
Từ (1) và (2) => IB = OB = R => Khoảng cách từ I đến B không đổi và luôn bằng R
Vậy khi M thay đổi trên d thì điểm I luôn thuộc đường tròn (B;R) cố định.