Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 dễ thôi. Bạn tính tử, rồi tính mẫu sao cho khi phân phối ở cả tử và mẫu đều có phần thừa số có thể rút gọn cho nhau. Giờ mik bận quá nên ko thể giải dầy đủ. Thông cảm nha...
Câu 2: Cũng ko khó lắm đâu:
S=\(\frac{1}{1}\) - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}\)+...+\(\frac{1}{n}\)-\(\frac{1}{n+3}\)
=1-\(\frac{1}{n+3}\)<1.
Vậy: S<1
Để làm dc bài sau, bạn nhớ giùm mik công thức: \(\frac{a}{b.\left(b+a\right)}\)=\(\frac{1}{b}\)-\(\frac{1}{b+a}\)
Câu 3: Đặt \(A=\frac{2003.2004-1}{2003.2004}\), \(B=\frac{2004.2005-1}{2004.2005}\)ta có:
\(A=\frac{2003.2004}{2003.2004}\)-\(\frac{1}{2003.2004}\)=1-\(\frac{1}{2003.2004}\)
\(B=\frac{2004.2005}{2004.2005}\)-\(\frac{1}{2004.2005}\)=1-\(\frac{1}{2004.2005}\)
Vì 2003.2004<2004.2005=>\(\frac{1}{2003.2004}\)>\(\frac{1}{2004.2005}\)
=>1-\(\frac{1}{2003.2004}\)<1-\(\frac{1}{2004.2005}\)
Vậy: \(\frac{2003.2004-1}{2003.2004}\)< \(\frac{2004.2005-1}{2004.2005}\)
Nhớ cho mik nha. Thanks
A = \(\frac{7.9+2.7.3.9-3.7.4.9}{3.7.3.9+2.3.7.9.9+7.9.4.3.9}\)
= \(\frac{7.9.\left(1+6-12\right)}{3.7.9.\left(3+18+36\right)}=\frac{-5}{3.57}=\frac{-5}{171}\)
Ta có :
+) \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
+) \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
ta thấy :
\(\frac{1}{2003.2004}>\frac{1}{2004.2005}\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
Rút gọn tử số và mẫu số, ta được:
1.1+1.1+1.1/3.3+3.3+3.3
=1.3/9.3
Rút gọn 3 trên tử với 3 dưới mẫu
Vậy A=1/9
Tick nhé
ta có :
+) \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
+) \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
ta thấy :
\(\frac{1}{2003.2004}>\frac{1}{2004.2005}\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
1, mình không ghi đề nha
A= \(\frac{1.1+1.1+1.1}{3+3.3+3.3+3}\)
A=\(\frac{1.3}{9.3}\)
A=\(\frac{1}{9}\)
Cảm ơn bạn!